

I

API description file retrieval outline

Catalogue
1. RflySim platform control hardware interface ... 1

1.1. Remote control ... 1

1.1.1. Real remote control ... 1

1.1.2. QGC+ remote control USB control ... 2

1.1.3. QGC virtual remote control .. 4

1.2. Ground station control ... 5

1.2.1. Parameter Settings .. 5

1.2.2. Key commands (take-off, landing, return) (Vehicle Setup) 7

1.2.3. Route Planning (Plan) ... 13

1.2.4. Analyze Tools ... 17

1.2.5. Ground Station Application settings .. 20

1.3. Control equipment and communication media.. 23

1.3.1. Wireless data transmission (PC connects to PX4 through data trans

mission and controls it) .. 23

1.3.2. Wired serial port module (NX connects PX4 through wired serial p

ort and controls it) .. 23

1.3.3. WIFI module (with onboard board for message forwarding) 24

2. RflySim platform control mode interface ... 24

2.1. Conventional flight control mode... 24

2.1.1. Take-off Mode: ... 24

2.1.2. Landing mode: ... 25

2.1.3. Fixed point/hover mode: ... 26

2.1.4. Task mode: ... 26

2.1.5. Set height mode: .. 27

2.1.6. Self-stabilization/manual control (attitude Angle control mode) mode:

 27

2.1.7. Stunt (Angular speed control) mode: .. 28

2.1.8. Return mode: .. 28

2.2. External control mode ... 28

2.2.1. Control messages ... 30

2.2.2. Control interface ... 33

2.2.3. Typical combination mode .. 35

II

3. Control model .. 36

3.1. High precision model +PX4 controller composed of software/hardware si

mulation model in the loop (rely on CopterSim, copied from the model group) 36

3.1.1. CopterSim and PX4 communication port.. 36

3.1.2. Messages sent by CopterSim to PX4 over TCP 37

3.1.3. Messages sent by CopterSim to PX4 over UDP 38

3.2. High-precision model +Simulink controller composed of high-precision i

ntegrated model（Rely on CopterSim） ... 38

3.2.1. Integrated Model control protocol .. 38

3.2.2. Rotor integrated model control interface ... 40

3.2.3. Fixed wing integrated model control interface 42

3.3. Simplified comprehensive model based on particle model（Rely on Pyth

on rotors to copy from the cluster API） ... 44

4. RflySim control protocol（Only the enterprise customized version supports Redis） .. 44

4.1. General introduction ... 44

4.1.1. Emulation modes supported by CopterSim ... 45

4.1.2. Connection modes supported by CopterSim 45

4.2. Data Protocol .. 46

4.2.1. outHILStateData ... 46

4.2.2. SOut2Simulator ... 46

4.2.3. inHILCMDData .. 47

4.2.4. outHILStateShort .. 47

4.2.5. inOffboardShortData（Minimal control protocol, supported by Copter

Sim in UDP/Redis Simple mode） ... 48

4.3. Communication ports ... 49

4.3.1. UDP14540 series +TCP4560 series（communication with PX4, PX4

default port when the software is simulated in the loop） 49

4.3.2. UDP16540 series (communication with PX4, RflySim private port d

uring ring simulation) .. 49

4.3.3. Serial port（communication with PX4, hardware-in-the-loop emulatio

n port） 49

4.3.4. UDP20100 series (Python/Simulink to obtain status information and

issue control commands) ... 50

4.3.5. UDP30100 Series (Get True status information or issue control com

mands through inSIL) ... 50

III

4.3.6. UDP40100 Series (Get User-Defined messages) 51

4.3.7. TCP6379（Redis port） .. 51

4.4. RflySim UDP protocol .. 51

4.4.1. CopterSim UDP_Simple .. 51

4.4.2. CopterSim UDP_Full ... 53

4.4.3. CopterSim Redis_Simple/Full .. 54

4.4.4. Simulink control mode Full/Simple/UltraSimple 54

4.4.5. Python control mode（Full support for CopterSim mode） 54

5. The MAVLink protocol ... 54

5.1. Introduction to MAVLin .. 54

5.1.1. Format of the MAVLink packet .. 54

5.1.2. MAVLink data parsing .. 55

5.2. Common MAVLink messages... 56

5.2.1. HEARTBEAT .. 56

5.2.2. ATTITUDE（Attitude - Euler Angle） ... 57

5.2.3. ATTITUDE_QUATERNIO ... 58

5.2.4. LOCAL_POSITION_NED ... 59

5.2.5. GLOBAL_POSITION_IN .. 60

5.2.6. ACTUATOR_OUTPUT_STATUS .. 61

5.2.7. ATTITUDE_TARGE... 61

5.2.8. POSITION_TARGET_LOCAL_NE ... 62

5.2.9. POSITION_TARGET_GLOBAL_IN ... 63

5.2.10. HOME_POSITIO .. 65

5.2.11. HIL_ACTUATOR_CONTROLS（PX4 to Sim control output） 66

5.2.12. HIL_SENSOR（Sim to PX4 sensor information） 67

5.2.13. HIL_GPS（Sim to PX4 GPS information） 68

5.3. Microservice .. 71

5.3.1 Heartbeat/connection protocol ... 72

5.3.2 Task protocol .. 73

5.3.3 Parameter protocol ... 74

5.3.4 Command protocol ... 74

5.3.5 Manual control protocol (joystick) ... 75

5.3.6 Camera protocol ... 76

5.3.7 Image transfer protocol ... 76

5.3.8 File Transfer Protocol (FTP) .. 77

IV

5.3.9 PING protocol .. 78

5.3.10 Path Planning Protocol (Trajectory Interface) ... 79

5.3.11 Battery protocol .. 79

5.3.12 Event Interface (WIP) ... 80

5.3. CopterSim MAVLink_Simple .. 81

5.4. CopterSim MAVLink_Full ... 81

6. Control interface（original,PX4MavCtrlV4.py） ... 81

6.1. UDP control interface of Simulink .. 81

6.1.1. UDP Send (UDP Send Byte Stream Module) 81

6.1.2. Receice UDP (UDP Receive Byte Stream Module) 82

6.1.3. UDP_SIL_State_Receiver (Module for receiving simulation position,

speed, attitude, etc.) ... 82

6.1.4. UDP_True_State_Receiver (Module for receiving information such a

s real position, speed, and attitude) .. 83

6.1.5. Location control (location messages packaged into byte streams) ... 84

6.1.6. Speed control (speed messages packaged into byte streams) 84

6.1.7. Analog remote control PWM control .. 85

6.2. Python UDP control interface .. 85

6.2.1. PX4MavCtrler:__init__()（Initialization of parameters） 86

6.2.2. InitMavLoop()（Initialize CopterSim to listen to MAVlink） 86

6.2.3. endMavLoop()（Stop Mavlink listening） .. 86

6.2.4. initOffboard()（Send offboard to PX4） ... 87

6.2.5. initOffboard2()（Send offboard to PX4） ... 87

6.2.6. InitTrueDataLoop()（Example Initialize listening for UDP True） .. 87

6.2.7. EndTrueDataLoop()（Example End UDP True listening） 88

6.2.8. Access the read status of PX4MavCtrler member variables 88

6.2.9. SendVelNED()（Send maximum speed to PX4） 89

6.2.10. SendVelNEDNoYaw()（Maximum transmission speed without yaw）

 89

6.2.11. SendVelFRD()（Maximum sending speed under FRD framework） . 9

0

6.2.12. SendVelNoYaw()（Send maximum speed under FRD frame without

rolling down） ... 90

6.2.13. SendPosNED()（Send coordinates to PX4） 90

6.2.14. SendVelYawAlt()（Send gesture to PX4） ... 90

V

6.2.15. SendPosGlobal()（Send target location to PX4） 91

6.2.16. SendPosNEDNoYaw()（Send target position without yaw control） 9

1

6.2.17. SendPosFRD()（Send the location under FRD to PX4） 91

6.2.18. SendPosFRDNoYaw()（Send position under FRD without yaw contr

ol to PX4） 91

6.2.19. SendPosNEDExt()（Send target position to fixed wing） 91

6.2.20. sendPX4UorbRflyCtrl()（Send data to CopterSim） 92

6.2.21. SendAccPX4()（Send acceleration information to PX4）................. 92

6.2.22. endOffboard()（Send out offboard mode to PX4） 92

6.2.23. stopRun()（Stop listening for mavlink messages） 93

6.3. Simulink's MAVLink control interface (serial connection) 93

6.3.1. mavlink_msg_sender ... 93

6.3.2. mavlink_msg_receiver .. 94

6.3.3. MavLink Serial Input&Output .. 94

6.4. Python's MAVLink control interface (based on pymavlink) 95

6.4.1. SendMavArm () (issue a disarmament order to PX4) 95

6.4.2. SendMavCmdLong() (Sending the command length to PX4) 95

6.4.3. sendMavOffboardCmd() (send an off-board command to PX4) 96

6.4.4. initRCSendLoop() (Initializing remote control) 96

6.4.5. SendRCPwms() (Update PWM value of remote control) 97

6.4.6. endRCSendLoop() (Stopping the remote transmission loop) 97

6.4.7. SendSetMode() (Send the mavlink command to switch the flight m

ode) 97

6.4.8. SendAttPX4() (sends speed control signal to PX4) 97

6.4.9. enFixedWRWTO () (order the aircraft to take off from the runway)

 98

6.4.10. SendCruiseSpeed()（Send the command to change the cruising speed

 of the aircraft） ... 98

6.4.11. SendCopterSpeed()（Set the maximum multi-rotor speed） 98

6.4.12. SendGroundSpeed()（Set the ground speed of the aircraft） 98

6.4.13. SendCruiseRadius()（Set the cruising radius of the aircraft） 99

6.4.14. sendTakeoffMode()（Take-off order） ... 99

6.4.15. sendMavTakeOff()（Order the plane to take off to the desired positi

on） 99

VI

6.4.16. sendMavTakeOffLocal()（Order the aircraft to fly to the desired loc

al location） 99

6.4.17. sendMavTakeOffGPS()（Order the aircraft to fly to the desired glob

al location） 100

6.4.18. sendMavLand()（Land in position） ... 100

6.4.19. sendMavLandGPS()（Land at the designated global location） 100

6.4.20. sendMavSetParam()（Send a command to PX4 to change the expect

ed parameters） ... 101

6.4.21. SendHILCtrlMsg() (PX4 send to ComSim) 101

6.4.22. SendHILCtrlMsg1()（Send debugging instruction） 101

6.5. Ros-based MAVLink control interface (based on mavros, copy the visual

 group) 101

7. rflysim Standard Library Edition control interface (new version, support Redis) 102

7.1. ctrl ... 102

7.1.1. Code structure .. 102

7.1.2. offboard.py .. 102

7.1.3. topics.py .. 107

7.2. User Api ... 108

7.2.1. ctrl ... 108

7.2.2. test ... 118

7.3. test_ctrl.py ... 118

8. QGC secondary development ... 120

8.1．Development environment preparation and setup .. 121

8.2．Module introduction .. 121

8.2.1 Communication process ... 122

8.2.2 Plug-in architecture .. 122

8.2.3 Important class introduction .. 123

8.2.4 Main components of the user interface .. 124

8.2.5 Factual system .. 126

8.2.6 Primary view .. 126

8.3．New feature case .. 127

1

1. RflySim platform control hardware interface

1.1. Remote control

1.1.1. Real remote control

The remote control used in this platform is recommended to use the "American hand"

 control mode, that is, the left rocker corresponds to the throttle and yaw control amount,

while the right rocker corresponds to the roll and pitch. The roll, pitch, throttle and yaw i

n the remote control correspond to the CH1~CH4 channel of the receiver respectively, and

 the left and right upper side lever corresponds to the CH5/CH6 channel to trigger the fli

ght mode switch.

The throttle rod (CH3 channel) corresponds to the PWM signal fluctuation from 1100

to 1900 from the bottom end and the top end respectively (different channels or different

remote controls will be different, so need to be calibrated); Roll (CH1 channel) and yaw

(CH4 channel) rockers from leftmost end to rightmost end correspond to PWM signals fro

m 1100 to 1900; The pitch (CH2 channel) rocker corresponds to the PWM signal from 1

900 to 1100 from the bottom to the top; The CH5 is a two-stage switch with the corresp

onding PWM signals of 1100 and 1900. The CH6 is a three-segment switch with the corr

esponding PWM signals of 1100, 1500 and 1900. More remote control related configuratio

n please see: *\PX4PSP\RflySimAPIs\2.RflySimUsage\1.BasicExps\e11_RC-Config\Readme.pd

f

滚转通道
CH1

俯仰通道
CH2

油门通道
CH3

偏航通道
CH4

显示屏

开关

拨杆开关SA
CH5(解锁)

插在USB口右侧

插在RCIN口
插在左侧

PWM/PPM/W.BUS/8口

从下往上，黑红黄

接收机 自驾仪

遥控器

无线信号

拨杆开关SB
CH6(模式切换)

2

1.1.2. QGC+ remote control USB control

The remote control is generally through the receiver + flight control and then linked

to the computer, you can then conduct relevant experiments on the simulation computer, b

ut the remote control that supports the game controller can be linked to the simulation co

mputer and the remote control through the USB cable, such as: The FS-i6s can directly c

onnect the QGC of the simulation computer through USB cable. Before the first simulatio

n, the remote control needs to be calibrated. Connect the simulation computer through US

B cable, open the QGC software in the left gamypad, click "Calibration", and calibrate ac

cording to the figure.

The detailed steps are as follows:

1、Double-click the SITLRun file, start the one-click software in the ring simulation s

cript, Enter "1" in the pop-up CMD dialog box, press the Enter key, wait for the RflySim

 platform to start CopterSim, RflySim3D and QGC software, wait for the CopterSim mess

age box to display: PX4: GPS 3D fixed & EKF initialization finished.

3

2、Connect the computer via USB cable, open the button allocation of the gamepad,

and perform the following Settings:

3、Unlock via SWB/CH5 channel and watch the aircraft take off in RflySim3D.

4

Note: Set COM_RC_IN_MODE=1 - Joystick/No RC Checks.

1.1.3. QGC virtual remote control

QGroundControl allows you to control the vehicle using a virtual thumb on the scree

n. They appear as follows in flight view:

The response of the virtual joystick control is not as good as using the RC transmitte

r (because the information is sent via MAVLink). Another option is to use a USB joystic

k/game pad. Enable the virtual Joystick: 1. Select the Q icon ->Application Settings from

the top toolbar, then select General from the sidebar. 2. Select the virtual gamepad check

box.

5

1.2. Ground station control

1.2.1. Parameter Settings

The overall interface of QGroundContrl is shown in the following figure, and the rele

vant explanations of each button in the interface are shown as follows:

6

① Start button: This button displays a shortcut menu for vehicle initialization Settings, a

nalysis tool usage, and related software property Settings.

② Vehicle status display: generally, the overall state of the vehicle can be quickly viewe

d from here.

③ Control mode selection: The button can switch different control modes, such as: man

ual, self-stabilizing, stunt and so on.

④ Notification: Here you can view the information when the vehicle is running, such as:

 warning information, error information, etc.

⑤ GPS status: shows the number of satellites that the current vehicle can search.

⑥ Handle link status display.

⑦ Battery power display.

⑧ ROI region identification.

⑨ IMU Status real-time dashboard.

⑩ Route planning.

⑪ Take-off button.

⑫ Return button.

⑬ Record button: can record QGC interface video.

⑭ Virtual Handle CH3/CH4 channels.

⑮ Virtual handle CH1/CH2 channel.

7

1.2.2. Key commands (take-off, landing, return) (Vehicle

Setup)

The following key commands are displayed on the initial interface of the QGC groun

d station https://docs.qgroundcontrol.com/master/en/qgc-user-guide/setup_view/setup_view.html

① Vehicle overview: Displays the overall status of the currently connected vehicle, such

as: rack, sensor, remote control, flight mode, etc.

② Firmware: Do not connect to the flight control, click the following page, and then us

e USB to connect to the computer, pay attention to the flight control do not use batt

eries or other devices other than USB power supply.

https://docs.qgroundcontrol.com/master/en/qgc-user-guide/setup_view/setup_view.html

8

③ Rack: Connect the flight control to the ground station, set the rack to the model you

want to set, after setting, please "apply and restart" in the upper right corner to take

effect.

④ Sensor: The sensor mainly includes the sensor involved in the IMU, when calibrating,

 generally calibrate the compass first, the steps are as follows:

Position the drone in any direction shown in red and remain stationary. When prompt

ed (the directional image turns yellow), rotate the vehicle around the specified axis in

9

 either/both directions. When the current orientation calibration is complete, the releva

nt image on the screen will turn green.

Repeat the calibration process for all directions. When all orientations are calibrated,

QGroundControl will display Calibration complete (all directional images will appear

green and the progress bar will be fully filled). You can then move on to the next s

ensor.

Calibrating the gyroscope: Click the gyroscope sensor button to place the drone hor

izontally on the ground and remain stationary. Click OK to start the calibration. A fu

ll bar at the top indicates successful calibration.

⑤ Remote control

Open the remote control, switch to the remote control page, check whether the chann

10

el can be identified in the lower right corner, if it can be identified, you can calibrate, se

lect the operation mode in the upper right corner, and then click Calibration

 And then click "OK"

 Then click "Next"

 Move the remote control stick to the position indicated in the image below.

11

 When the rod is in place, the ground station will prompt the next position to be dialed,

and after dialing all positions, press "Next" twice to save the Settings.

⑥ Flight mode switch

Click the check box to the right of "Mode channel" to set the corresponding remote

control dip switch channel.

Then set the flight mode for each of the three gears.

12

Other switch channels are on the right side of flight mode, as follows. If you need t

o set which one, you can set the remote control channel on the right side of this switch.

I have set a Kill switch here, and the channel is the fifth channel of the remote control.

The function of the brake is to stop the motor directly, which can be set as required

⑦ Power supply

When calibrating the electrical control, use USB to connect the flight control to the g

round station, no battery, no pulp blade, and the signal line of the electrical control is co

nnected to the flight control. Switch to the "Power" page, enter the number of battery cor

es and press enter, click "Calibrate", and then plug in the battery to calibrate.

13

⑧ Motor: Display PWM of the motor

⑨ Safety: Under this menu, you can set the vehicle's low power fault protection trigger,

object detection, remote control signal loss fault.

⑩ PID tuning: the PID control parameters of the vehicle can be adjusted.

⑪ Flight Behavior.

⑫ Camera settings

⑬ Any parameter defined in the PX4 software can be modified here, and the modificati

on takes effect only after the restart.

1.2.3. Route Planning (Plan)

Route planning supports manual doting function. Click File -> Blank. By default, take

off point must be set before other takeoff points can be set

14

If you want to directly set the takeoff point (such as unmanned ships and other vehic

les) without setting the takeoff point, you can check the option below in the general Setti

ngs of the ground station:

Then you can set the departure point without setting the departure point. After clickin

g "takeoff", the takeoff point will be generated at the current position of the UAV. Then

click the "Waypoint" button, and click on the map to set the waypoint position. The set

waypoint can also be selected by the left mouse button and dragged to change its positio

n. Here, after clicking the take-off point, three waypoints are set, with a total of four poi

nts, as shown below. On the right side of the map, there is a setting page for each line

15

point.

Click the small trash can icon to the left of the corresponding waypoint to delete the way

point.

Click Waypoint To the right of the small trash can icon to set the type of the point,

the default is Basic category, there are four Waypoint, Return To Launch, Land, Takeoff, r

espectively, corresponding to the action to be performed after reaching the waypoint. The

above four points are sufficient for normal quadrotor use, but if you need to perform som

e more advanced actions (such as hanging mode switching), you need to look for the oth

er categories below.

16

Here, the first point is set as the departure point, the second and third points are set

as the departure point, and the fourth point is set as the return point, so that the unmann

ed aircraft will take off and fly first to the second point, then fly to the third point, and

return to the departure point after reaching the third point. In the Mission Start column, y

ou can set the altitude of the landing point to be equal to the flying speed. This setting

will be valid for all mission points.

In each task point, you can also set the height and residence time equivalent, but the

 setting here is only valid for the task point, there is a three-bar icon on the right side o

f each task point, you can click the icon to set more information about the task point

17

Edit Location allows you to edit the location in detail. Show All Values allows you t

o edit all parameters of a task point

1.2.4. Analyze Tools

QGC provides a wealth of data analysis tools, including log downloads, geotagged im

ages, MAVlink console, MAVLink detection, and vibration.

Log download: In the case of linking to the flight control, you can select any log in

formation stored in the current flight control memory card to download the.ULG format fi

le. The file can be downloaded through the website: https://docs.px4.io/main/zh/log/flight_lo

g_analysis.html log for analysis.

https://docs.px4.io/main/zh/log/flight_log_analysis.html
https://docs.px4.io/main/zh/log/flight_log_analysis.html

18

Geotagged images: Used to tag a set of survey mission images with gps, but a bina

ry log of waypoints must be provided along with a directory containing the images to tag.

MAVLink Console: It provides a Shell for data communication with Nuttx, the on-bo

ard flight control operation system.

19

MAVLink detection:

Vibration: Analyze vibrations associated with vehicles

20

1.2.5. Ground Station Application settings

General options: Mainly for application Settings, these are used to specify: display u

nit, auto connect device, video display and storage, RTK GPS, etc.

Communication connection: Allows you to manually create communication connectio

ns

21

Offline map: Allows you to cache maps for use when there is no Internet connectio

n

MAVlink：Allows you to configure options and view messages specific to MAVLink

communication. This includes setting the MAVlink system ID for the QGC and looking at

the connection quality.

22

Control console:Used to capture application logs to help with application problems

Common logging options

Otion Description

LinkManagerLog,MultiVehicleManagerLog Debug connection problem.

LinkManagerVerboseLog Debug did not detect serial port. The

continuous output of the available seri

al port is very noisy.

FirmwareUpgradeLog Debugging firmware flash problems.

ParameterManagerLog Debug parameter loading problems.

ParameterManagerDebugCacheFailureL

og

The debug parameter cache crc did n

ot match.

PlanManagerLog,MissionManagerLogGeo

FenceManagerLogRallyPointManagerLo

g

Debug scheduled upload/download iss

ues.

RadioComponentControllerLog Debug radio calibration problems.

23

1.3. Control equipment and communication media

1.3.1. Wireless data transmission (PC connects to PX4 t

hrough data transmission and controls it)

Wireless data transmission (optional) can be used to establish a wireless MAVLink co

nnection between the QGroundControl ground station and the PX4 flight control. This sect

ion covers two topics: wireless data transmission that is already supported and integrating

new data transmission into PX4 systems.

http://docs.px4.io/main/en/telemetry/index.html lists the PX4 has support for wireless da

ta transmission system. Includes data transmission using SiK Radio firmware and 3DR Wi

Fi wireless data transmission.

1.3.2. Wired serial port module (NX connects PX4 throu

gh wired serial port and controls it)

Port preconfiguration: The following functions are usually mapped to the same specifi

c serial port on all boards, so are mapped by default:

⚫ MAVLink is mapped to pull 1 port with baud rate 57600(for telemetry modules).

⚫ GPS 1 (GPS driver) is mapped to GPS 1 port with automatic baud rate (with th

http://docs.px4.io/main/en/telemetry/index.html

24

is setting, GPS will automatically detect baud rate - except Trimble MB-Two, w

hich requires 115200 baud rate).

⚫ On Pixhawk devices with an Ethernet port, map the MAVLink to the Ethernet p

ort using MAV_2_CONFIG.

⚫ Other ports are not specified by default (disabled).

Configure ports:

⚫ Restart the vehicle to make the additional configuration parameters visible.

⚫ Sets the baud rate for the selected port to the desired value.

⚫ Configure module-specific parameters (i.e. MAVLink flow and data rate configura

tions).

The GPS/Compass > Secondary GPS section provides a practical example of how to

configure ports in QGroundControl (it shows how to run secondary GPS on TELEM 2 po

rts using GPS_2_CONFIG)

1.3.3. WIFI module (with onboard board for message fo

rwarding)

WiFi telemetry enables MAVLink communication between WiFi radios on the vehicle

and GCS. WiFi typically offers shorter distances than regular telemetry radios, but support

s higher data rates and can more easily support FPV/ video feeds. Usually the vehicle onl

y needs one radio unit (assuming the ground station already has WiFi).

The PX4 supports telemetry over UDP and Wifi. It broadcasts the heartbeat to port 1

4550(255.255.255.255) until it receives the first heartbeat from the ground control station,

at which point it sends data only to this ground control station.

Compatible WiFi data transmission modules are:

⚫ ESP8266 WiFi module

⚫ ESP32 WiFi Module

⚫ 3DR Telemetry Wifi (Discontinued)

2. RflySim platform control mode interface

2.1. Conventional flight control mode

2.1.1. Take-off Mode:

Take-off flight mode allows the vehicle to take off to a specified altitude and await f

urther input. The model requires a good location estimate (e.g., from GPS). You must unl

ock this mode before using it. This mode is automatic and does not require user intervent

25

ion to control the vehicle. The remote switch can change the flight mode on any drone.

Moving the remote controller joystick in multi-rotor mode (or VTOL in multi-rotor mode)

will switch the drone to position mode by default, unless dealing with battery fail-safe. If

there is a problem during takeoff, the fault detector will automatically stop the engine.

Multiple rotors (MCS) rise to the height defined in MIS_TAKEOFF_ALT and hold po

sition. The remote control joystick moves the drone into position mode (default). Take-off

is affected by the following parameters:

More aircraft take-off model explanation, please see: http://docs.px4.io/v1.13/zh/flight_modes

/takeoff.html

2.1.2. Landing mode:

Land flight mode lands the vehicle in the location where the mode is being used, an

d after landing, the drone will lock up after a short period of time (by default). This mod

e requires a valid position estimate, unless the mode is entered due to fail-safe, in which

case only an altitude estimate is required (usually the flight control has a barometer built

in). This mode is automatic and does not require user intervention to control the vehicle.

The remote control switch can be used to change the flight mode of any drone. Moving t

he remote controller joystick in multi-rotor mode (or VTOL in multi-rotor mode) will swit

ch the drone to position mode by default, unless dealing with battery fail-safe.

The drone will land at the location specified by the pattern. The drone descends at t

he speed specified by MPC_LAND_SPEED and locks up after landing (default). The remo

te control joystick moves the drone into position mode (default). Landing is affected by th

e following parameters:

http://docs.px4.io/v1.13/zh/flight_modes/takeoff.html
http://docs.px4.io/v1.13/zh/flight_modes/takeoff.html

26

For more models, please see:http://docs.px4.io/v1.13/zh/flight_modes/land.html

2.1.3. Fixed point/hover mode:

The spot/hover mode (aka "wait"/" hover ") stops the vehicle and maintains its curren

t GPS position and altitude (the multi-rotor will hover at the GPS position, while the fixe

d wing will rotate around it). This mode can be used to pause tasks or help you regain c

ontrol of the vehicle in an emergency. It is usually activated by a pre-programmed switch.

 The multi-rotor UAV hovers at its current position and altitude. Remote control stick mo

vement will switch the drone to position mode (default). You can configure this action wit

h the following parameters.

More models which explain please see: http://docs.px4.io/v1.13/zh/flight_modes/hold.html

2.1.4. Task mode:

Mission mode enables the vehicle to perform predefined autonomous tasks (flight plan

s) that have been uploaded to the flight controller. Ground station (GCS) applications such

 as QGroundControl(Open New Window)(QGC) are commonly used to create and upload t

asks. Missions are usually created in a ground control station (e.g.，QGroundControl (ope

http://docs.px4.io/v1.13/zh/flight_modes/land.html
https://docs.qgroundcontrol.com/en/PlanView/PlanView.html

27

ns new window)）and uploaded before launch. They can also be created by the developer

 API, and/or uploaded on the fly. Individual mission commands are handled in a manner

appropriate to the flight characteristics of each vehicle (e.g., helicopter hovers and fixed-wi

ng hovers). VTOL aircraft follow fixed-wing behavior and parameters in fixed-wing mode

and rotorcraft behavior and parameters in multi-rotor mode. More explanation, please see:

http://docs.px4.io/v1.13/zh/flight_modes/mission.html

2.1.5. Set height mode:

High altitude mode is a relatively easy to fly RC mode, in which the roll and pitch

rods control the movement of the vehicle in the left, right and forward directions (relative

to the "front" of the vehicle), the yaw rod controls the rate of rotation in the horizontal p

lane, and the throttle controls the rise-descent speed. When the joystick is released/centere

d, the vehicle will level and remain at its current height. The following diagram shows th

is mode visually (using the remote control of the American hand as an example). More e

xplanations can be found at: http://docs.px4.io/v1.13/zh/flight_modes/altitude_mc.html

2.1.6. Self-stabilization/manual control (attitude Angle co

ntrol mode) mode:

Manual/stable mode when stabilizing multiple helicopters, RC control rods are concent

rated. To manually make the body move/fly, you can move the joystick so that it is off c

enter. If you set manual or stable mode, multi-rotor mode is enabled. Under manual contr

ol, the transverse rocker and pitch rods control the Angle (attitude) of the vehicle around

their respective axes, the yaw rod controls the rate of rotation on the horizontal plane, an

d the throttle controls the height/speed. Once the joystick is released, they will return to t

he central dead zone. Once the roll and pitch rocker are centered, the multi-rotor drone w

ill stabilize and stop moving. The body will then hover in the proper position/maintain alt

itude - provided the balance is right, the throttle is set properly (view below), and no ext

ernal forces are applied (e.g. wind). The vehicle will drift in any wind direction and you

https://docs.qgroundcontrol.com/en/PlanView/PlanView.html
http://docs.px4.io/v1.13/zh/flight_modes/altitude_mc.html

28

must control the throttle to maintain altitude. More explanations can be found at:http://doc

s.px4.io/v1.13/zh/flight_modes/manual_stabilized_mc.html

2.1.7. Stunt (Angular speed control) mode:

The mode is RC mode and is used to perform acrobatic moves such as flips, rolls, a

nd loops. The roll, pitch, and yaw rods control the angular rate of rotation around the res

pective axis, and the throttle is passed directly to the output mixer. When the joystick is

centered, the aircraft will stop rotating, but keep its current orientation (on its side, upside

 down or any other direction) and move according to the current momentum. For more e

xplanation please refer to:http://docs.px4.io/v1.13/zh/flight_modes/acro_mc.html

2.1.8. Return mode:

The mode is used to fly the vehicle onto a safe, barrier-free path to a safe destinatio

n where it can wait (hover or hover) or land. The PX4 provides several mechanisms for

selecting a safe return path, return destination, and landing, including the use of actual loc

ation, assembly (" safe ") points, mission path, and mission landing sequence.

More explanations can be found at: http://docs.px4.io/v1.13/zh/flight_modes/return.html

2.2. External control mode

（Refer tohttps://docs.px4.io/main/en/flight_modes/offboard.html）

The PX4 can be controlled by an independent auxiliary computer over wired or wifi,

https://docs.px4.io/main/en/flight_modes/offboard.html

29

and the partner computers usually communicate via the MAVLink API, which is called ex

ternal control mode or Offboard control. The vehicle executes the position, speed and attit

ude instructions set by the auxiliary computer through MAVLink. The Offboard mode is

mainly used to do air maneuvers, and the corresponding proprietary mode is more appropr

iate for take-off, landing and return.

Offboard control is often used as the basic interface of upper layer algorithm develop

ment, such as visual obstacle avoidance, cluster formation needs to use Offboard position

and speed interface; For stunts, a lower-level attitude interface is needed. In addition, Offb

oard messages can also be used to control PTZ cameras, weapons, and more by setting ta

rget_component to the corresponding component ID.

The Offboard control has some key parameters that can be viewed or modified by Q

GC. The following table lists several key parameters. The user may encounter signal loss

when using Offboard control, and the signal enters a specific mode after the loss. These b

ehaviors are controlled by the following parameters.

Offboard Control key parameter table

COM_OF_LOSS_T The offboard lost failsafe is triggered when the signal is lost for

more than this time

COM_OBL_ACT In the absence of an RC signal, offboard lost failsafe switchover

mode. 0: Land, 1: Hold, 2: Return

COM_OBL_RC_A

CT

Description offboard lost failsafe Mode to which the RC signal is

triggered. 0: Position, 1: Altitude, 2: Manual, 3: Return , 4: Land

COM_RC_OVERR

IDE

Controls whether stick movement triggers switching to position mo

de. The function is disabled by default.

COM_RC_STICK_

OV

stick movement triggers the number of switches to position mode.

(COM_RC_OVERRIDE enabled)

Attention:

➢ The desired status must be set to a value greater than 2Hz; otherwise, the mode cannot

be activated or the vehicle automatically exits the mode.

➢ This mode requires position or attitude information.

➢ RC (remote control) control allows only switching modes.

➢ The vehicle must be unlocked to use this mode.

➢ Not all coordinate systems and field values supported by MAVLink are supported.

30

2.2.1. Control messages

 Three MAVLINK messages are used

 SET_POSITION_TARGET_LOCAL_NED（https://mavlink.io/en/messages/common.h

tml#SET_POSITION_TARGET_LOCAL_NED）

 SET_POSITION_TARGET_GLOBAL_INT（https://mavlink.io/en/messages/common.

html#SET_POSITION_TARGET_GLOBAL_INT）

 SET_ATTITUDE_TARGET（https://mavlink.io/en/messages/common.html#SET_ATTI

TUDE_TARGET）

MAVLINK has three messages related to Offboard control:SET_POSITION_TARGET_

LOCAL_NED、SET_POSITION_TARGET_GLOBAL_INT、SET_ATTITUDE_TARGET, The

 first interface is the most used of the three messages. The first two are position-controlle

d messages that contain information about desired position, desired speed, desired accelerat

ion, and so on. The main difference between these two position control messages is that

when sending GPS coordinates, because single-precision floating point numbers can not me

et the accuracy requirements, the GPS coordinates need to be converted to int type, which

 makes the data format of the two position messages different.

The following table shows the specific field details of the position control message. T

here are 16 fields in total. The field filled with color is the difference between the two p

osition control messages. In the following message, target_system is the target system ID,

which is usually obtained automatically after the connection is established. In normal flight

 control, target_component is the default value.

There are two most commonly used coordinate systems, one is LOCAL_NED, where

position, velocity, acceleration/force are all located in the NED coordinate system. The oth

er is GLOBAL_INT, where the position is represented by latitude, longitude, and altitude,

and the latitude and longitude are multiplied by 107 and converted to integers for transmi

ssion, while the velocity, acceleration/force are still represented in the NED coordinate syst

em. If the user wants to use other more special coordinate system, can refer to the officia

l documentation to set at https://mavlink.io/en/messages/common.html.

As you can see, the yaw Angle and yaw Angle rate are also included in the position

 control message. This is because the Offboard control message is designed from the pers

pective of the user task and needs to be turned when doing cluster formation or visual ta

sks, so these two messages are also added to the position control message.

SET_POSITION_TARGET_LOCAL_NED/SET_POSITION_TARGET_GLOBAL_INT

serial n name type units description

https://mavlink.io/en/messages/common.html#SET_ATTITUDE_TARGET
https://mavlink.io/en/messages/common.html#SET_ATTITUDE_TARGET
https://mavlink.io/en/messages/common.html

31

umber

1 time_boot_ms uint32_t ms system time

2 target_system uint8_t System ID, each flight contro

ller can be considered to hav

e a unique ID

3 target_component uint8_t Component ID, the default I

D for flight control is 0, if y

ou are controlling the PTZ c

amera or weapon equipment,

you can use other ids

4 coordinate_frame uint8_t
 The most commonly used co

ordinate system is MAV FRA

ME LOCAL NED = 1

The most commonly used FR

AME is MAV FRAME GLO

BAL INT = 5

5 type_mask uint16_t The bit flag indicates that co

ntrol information should be i

gnored

6 x float m x position in NED coordinate

s

lat_int int32_t degE7 WGS84 coordinates latitude

multiplied by 107

8

7

y float m y position in NED coordinate

s

lon_int int32_t degE7 WGS84 coordinates longitude

multiplied by 107

8 z float m NED coordinate height

alt height above sea level

9 vx float m/s NED coordinate system veloc

ity in the x direction

10 vy float m/s NED coordinate system y vel

ocity

11 vz float m/s NED coordinate system z vel

ocity

32

12 afx float m/s2 NED coordinates acceleration

or force in the x direction

13 afy float m/s2 Acceleration or force in the

y direction in the NED coord

inate system

14 afz float m/s2 NED coordinate system accel

eration or force in the z dire

ction

15 yaw float rad yaw angle

16 yaw_rate float rad/s Yaw Angle rate

Note: The padding in blue indicates that SET_POSITION_TARGET_LOCAL_NED is

unique, and the padding in green is unique to SET_POSITION_TARGET_GLOBAL_INT.

In the aerobatics and other high maneuver control, need to do a lower level of contr

ol, SET_ATTITUDE_TARGET message can support this function. The first four fields are

the same as the message above, except that the message supports the attitude, angular rat

e, and throttle value of the specified quaternion.

As you can see, attitude control messages are simpler than position control messages.

It is not enough to control the position by specifying a series of attitude values, you also

need to specify the throttle value. So the throttle value appears in the attitude control mes

sage.

SET_ATTITUDE_TARGET

serial n

umber

name type units description

1 time_boot_ms uint32_t ms system time

2 target_system uint8_t System ID, each flight contro

ller can be considered to hav

e a unique ID

3 target_component uint8_t Component ID, the default I

D for flight control is 0, if y

ou are controlling the PTZ ca

mera or weapon equipment, y

ou can use other ids

4 type_mask uint16_t The bit flag indicates that co

ntrol information should be ig

nored

33

5 q float[4] Attitude quaternion

6

6

body_roll_rate float rad/s Roll Angle rate

7 body_pitch_rate float rad/s Pitch Angle rate

8 body_yaw_rate float rad/s Yaw Angle rate

9 thrust float accelerograph

10 thrust_body ** float[3] standing off

2.2.2. Control interface

Location interface

Speed interface

Attitude interface

Acceleration interface

Interface of force

Yaw Angle interface

Yaw angular velocity interface

Offboard control supports position, speed, attitude, acceleration, force, and angular rate

 control, and is encapsulated in two types of messages according to the user's usage scena

rio, one is position control message and the other is attitude control message. Whether usi

ng python or matlab to control the aircraft, it is built on the basis of these two types of

messages. Control information such as position and speed is not mandatory, but the type_

mask flag bit must be used to specify what information can be ignored. type_mask is a u

int16_t type where each binary bit can identify a state information.

SET_POSITION_TARGET_LOCAL_NED and SET_POSITION_TARGET_GLOBAL_IN

T have different data formats in the data link. But they will all be converted into uORB

messages of type vehicle_local_position_setpoint_s. It can be seen that the NED coordinate

s are the reference coordinate system for PX4 position control, while other coordinate syst

ems are provided only for the convenience of users to describe specific tasks.

1）Location class interface introduction

Location interface. Contains 3 data, the Offboard location is entered into the controll

er as the desired location. The position interface is more complex than other interfaces be

cause of the coordinate system. Common coordinate systems include LOCAL_NED and G

LOBAL_INT. When LOCAL_NED, all three data are float; When the value is GLOBAL_I

34

NT, the latitude and longitude are int32_t and the height is float. The location interface c

orresponds to three flags, which are the 0-2 bits respectively. For example, if the 0 bit of

type_mask is 0, the x position is displayed. If all three component positions are specified,

bits 0-2 are all 0.

Speed interface. The speed interface belongs to the position control class message an

d contains three pieces of data. The desired speed specified by Offboard is superimposed

on the output of the position controller, that is, the true expected speed is the sum of the

desired speed specified by the position controller output and the desired speed specified b

y Offboard. When the output of the position controller is 0, the true desired speed is the

desired speed specified by Offboard. For both LOCAL_NED and GLOBAL_INT, the expe

cted velocity is also in the NED coordinate system. The type_mask corresponding to the s

peed interface is bits 3-5, which can also be specified independently.

Acceleration/force interface. The acceleration/force interface belongs to the position c

ontrol class message and contains three pieces of data. The acceleration/force is superimpo

sed on the output of the speed controller, and the desired acceleration is the value specifi

ed by Offboard only if the output of the speed controller is 0. Offboard Acceleration or f

orce Indicates force when the 9th bit of type_mask is 1; otherwise, acceleration is specifie

d. The presence or absence of acceleration/force is indicated by the 6-8 digits. Acceleratio

n control is not mature at present, although the interface is supported, it is not necessarily

 able to achieve better control effect. In both LOCAL_NED and GLOBAL_INT cases, the

 acceleration and force are described in the NED coordinate system.

Yaw Angle interface. Yaw Angle can belong to either position control message or att

itude control message and contains 1 data. Because position control messages and attitude

control messages are for different user scenarios, they are generally not specified at the sa

me time. Thus, no matter what type of task, the yaw Angle/yaw Angle rate needs to be s

pecified. The type_mask corresponding to the yaw Angle is the 10th bit, and when the 10

th bit is 0, there is a yaw Angle.

Yaw Angle rate interface. Yaw Angle rate can belong to either position control mess

age or attitude control message, and contains 1 data. The type_mask corresponding to the

yaw Angle rate is the 11th bit. When the 11th bit is 0, it indicates that there is a yaw A

ngle rate.

2）Attitude class interface introduction 【 New and old interfaces are not fully s

upported 】

Angular rate interface. The angular rate interface belongs to the attitude class interfa

ce and contains three data, namely, roll, pitch and yaw angular rate. The corresponding ty

35

pe_mask is bits 0-2. If bits 0-2 are all 0, it means that all yaw Angle rates are specified.

 The angular rate specified by Offboard will be superimposed on the output of the attitud

e controller. Only when the output of the attitude controller is 0, the real expected angula

r rate is the expected angular rate specified by Offboard.

Throttle interface. The throttle interface belongs to the attitude interface and contains

 1 data. The corresponding type_mask is the 6th bit. When the 6th bit is 0, the throttle i

s specified.

Attitude interface. The attitude data is described by quaternions and contains 4 data

in total. The corresponding type_mask is the 7th bit. When the 7th bit is 0, there is pose

data. Posture does not support independent posture, to specify you must specify 4 data.

2.2.3. Typical combination mode

PX4 Offboard protocol is very flexible, position, speed, attitude, etc., can be freely co

mbined. However, in actual use, the most commonly used patterns are often not free com

binations but some typical patterns. The following is an example of a typical combination

of rotorcraft and fixed wing.

Typical combination mode of rotorcraft. The following table lists typical combinatio

ns of control information for rotorcraft, which can be achieved by setting the two types o

f messages in the previous section. The RflySim platform provides interfaces for the follo

wing modes, which users can call directly. Users can also set up these messages themselv

es through MAVLINK, which enables not only the following patterns, but also more adva

nced patterns, such as specifying both location and speed.

In addition, the rotorcraft supports speed setting in the carrier coordinate system. The

speed in the carrier coordinate system is set by SET_POSITION_TARGET_LOCAL_NED.

When coordinate_frame is set to MAV_FRAME_BODY_NED: 8, the position is in NED c

oordinate system and the velocity acceleration is in BODY coordinate system.

Typical combination mode of rotorcraft

serial num

ber

description

0 Velocity mode in navigation coordinate system [vx,vy,vz, yaw rate]

1 Velocity mode in body coordinate system [vx,vy,vz, yaw rate]

2 Position mode in navigation coordinate system [x,y,z, yaw]

3 Position mode in body coordinate system [x,y,z, yaw]

4 Attitude throttle control command [roll, pitch, yaw (radian), throttle (0~1)]

36

5 Acceleration control mode [ax,ay,az,yaw]

6 Acceleration control mode [ax,ay,az,yaw rate]

Typical combination of fixed wings. Unlike rotorcraft, fixed wings are not free to c

ontrol any trajectory of flight, nor do they support independent control of speed in all dir

ections. The main control modes of fixed wing are [posx, posy, posz, speed]. The designa

tion of the horizontal position must meet certain constraints, because the fixed wing canno

t stay in a particular position. A fixed wing generally does not support specifying the yaw

 Angle, as the fixed wing always keeps the nose facing in the forward direction.

3. Control model

RflySim platform provides two categories of high-precision model and particle model,

high-precision model is often used for high-fidelity simulation, the number of vehicles is g

enerally small. The particle model can be used for large-scale clusters. High-precision mod

els are divided into two categories, one is the controller using PX4, which is the most re

alistic form of use, and the other is the controller is also integrated into the model called

comprehensive model. The advantage of the integrated model is that it can support large-s

cale high-fidelity cluster simulation more stably and reliably.

3.1. High precision model +PX4 controller composed of software

/hardware simulation model in the loop (rely on CopterSim,

 copied from the model group)

3.1.1. CopterSim and PX4 communication port

CopterSim can communicate with PX4 in the following way. Whether it is UDP/TCP/

 serial port, the packets sent follow the MAVLink protocol. The following figure can be

mainly boiled down to three communication modes.

The first is the software in the ring simulation mode of PX4, which corresponds to t

he PX4_SITL mode of CopterSim. For CopterSim, send messages using UDP14580+n port,

 send messages using UDP14540+n port, or send and receive messages using TCP4560+n.

In PX4 emulation, either UDP or TCP communication is usually chosen based on specific

requirements and performance requirements. For example, when transmitting sensor data, U

DP can be used to ensure the timeliness of the data, while TCP can be used when it is

necessary to control the aircraft and ensure the reliable transmission of instructions. Gener

37

ally, UDP is more suitable for scenarios that require high real-time performance and can t

olerate some data loss, while TCP is more suitable for data transmission scenarios that req

uire reliability and integrity. The problem with PX4_SITL mode is that it can support no

more than 40 aircraft, otherwise port conflicts will occur.

The second is PX4_SITL_RFLY provided by the RflySim platform. In this mode, Co

pterSim uses UDP17540 to send messages and UDP16540 to receive messages. The advan

tage of PX4_SITL_RFLY over PX4_SITL mode is that it can support large-scale clusters,

up to 1000 vehicles without port conflicts.

The third is hardware-in-the-loop simulation. In this mode, CopterSim will communica

te with the PX4 via a serial port.

CopterSim PX4-SITL

UDP收UDP14580+nPX4_SIL_UDP发

PX4_SIL_UDP收 UDP14540+n UDP发

UDP收UDP17540+nRFLY_SIL_UDP发

RFLY_SIL_UDP收 UDP16540+n UDP发

PX4_SIL/RFLY_SIL TCP

收发

TCP4560+n TCP收发

PX4-HITL

串口 MAVLINK收发MAVLINK收发

3.1.2. Messages sent by CopterSim to PX4 over TCP

Messages that CopterSim sends to PX4 over TCP include HIL_GPS, HIL_SENSOR, a

nd RC_CHANNELS_OVERRIDE. HIL_GPS is the simulated GPS data, and HIL_SENSOR

 is the simulated IMU data, including the data of gyroscope, accelerometer, magnetometer

and barometer. RC_CHANNELS_OVERRIDE simulates remote control data.

In the process of real flight, the data of the remote control is a radio frequency sign

al, which is relatively reliable, so you can also consider using TCP when simulating. The

sensor data comes from the flight control board, so TCP simulation is also appropriate. In

38

practice, some external control instructions are transmitted via data transmission, which is

relatively unreliable, so it is reasonable to simulate these data with UDP.

3.1.3. Messages sent by CopterSim to PX4 over UDP

The data sent to PX4 through UDP includes MANUAL_CONTROL, SET_POSITION_

TARGET_LOCAL_NED, SET_POSITION_TARGET_GLOBAL_INT, PARAM_SET, and SE

T_ATTITUDE_TARGET , COMMAND_LONG, HIL_ACTUATOR_CONTROLS, and HEA

RTBEAT. It also supports the forwarding of QGC data to CopterSim.

The joystick portion of the remote control data is not only sent over TCP, but also c

onverts the ch1-ch4 data into MANUAL_CONTROL messages to be sent to the PX4.

3.2. High-precision model +Simulink controller composed of high

-precision integrated model（Rely on CopterSim）

On the basis of the original dynamic model, the controller is realized and the compre

hensive model is formed. The controller uses MATLAB Simulink to realize basic attitude

control and fixed-point functions. The controller takes the real state of the model directly

as input. The most important part of the integrated model protocol is to agree on the inp

ut and output interfaces. The overall interface design considers only the full mode, while t

he simplified mode is considered in CopterSim.

3.2.1. Integrated Model control protocol

OffBoard control. The PX4 can be controlled by an independent auxiliary computer o

ver wired or wifi, and the partner computers usually communicate via the MAVLink API.

 The vehicle executes the position, speed and attitude instructions set by the auxiliary co

mputer through MAVLink. The Offboard mode is mainly used to do air maneuvers, and t

he corresponding proprietary mode is more appropriate for take-off, landing and return.

Use the inSIL protocol to complete input and output.

The 0th digit of inSILInts is used to represent and modify the state, and the correspo

nding bit is 1 to indicate the corresponding state of the system. For example, the first bit

indicates emulation mode, and when the first bit of the received inSILInts[0] is 1, it indic

ates that the system is in emulation mode.

The state is set only once when 0:hasCMD is 1, otherwise the synthesis model will r

emain in the original state. The original state can come from setting an external setting v

alue, or it can be an internal state automatically converted. For example, after receiving th

e take-off command, it first switches to the take-off mode, and automatically switches to t

39

he fixed-point mode after the take-off is completed.

inSILInts[0] Vehicle Command Bitmap

0:hasCMD 1: SIL 2: Arme

d

3: 4: 5: 6: 7:

Have new

orders

scale aeromo

delling

unlock

8:Takeoff 9: Position 10: Lan

d

11: Retu

rn

12:Lotier 13:Hei

ght

14:Hor 15:

take off fixed point /

waypoint

land return fl

ight

Hover (fi

xed wing)

Fixed

height

mode

Horizont

al positi

on contr

ol

16:Offboar

dPos

17:OffboardA

tt

18: 19: 20: 21: 22: 23:

offroad pos

ition contr

ol series

offroad positi

on attitude s

eries

24: 25: 26: 27: 28: 29: 30: 31:

Note: When position control is enabled, horizontal position and vertical position are e

nabled at the same time

Bits 0-7 of inSILInts[1] are position-class markers, and bits 8-15 are position-class m

arkers.

inSILInts[1] Offboard Indicates the control flag

0:hasPo

s

1:hasVel 2:hasAcc 3:hasYaw 4:hasYawRa

te

5: 6: 7:

Locatio

n

speed accelerated s

peed

yaw angle Yaw Angle

rate

8:hasAtt 9:hasRollRat

e

10:hasPitchRa

te

11: hasThrust 12: 13: 14: 15:

attitude Roll Angle r

ate

Pitch Angle

rate

accelerograph

16:NED 17:Global 18: 19: 20: 21: 22: 23:

Position

 and sp

Position and

speed Global

40

eed NE

D

24: 25: 26: 27: 28: 29: 30: 31:

Integer

type lati

tude

Precision of

integer type

inSILInts[6] represents the latitude of the integer type, and inSILInts[7] represents the

longitude of the integer type.

Note: The corresponding value is 1 when position control is used only, 2 when speed

 control is used only, 8 when yaw Angle is used only, and 16 when Angle rate is used

only. If multiple controls need to be combined, the values for separate controls are added.

inSILFloats protocol. inSILFloats are used to store actual data. Their meanings can ch

ange depending on the Settings of inSILInts. For example, the first three represent positio

ns, but the specific coordinate system is controlled by inSILInts.

inSILFloats[0-2] =pos；

inSILFloats[3-5]=vel；// Speed | remote control pitch, roll, yaw signals |inSILFloats[3]

can be used as speed

inSILFloats[6-8]=acc；

inSILFloats[9-11]=att； // Attitude control uses Euler angles and is more intuitive for

the user.

inSILFloats[12-14]=attRate;

inSILFloats[15]=thrust; // accelerograph

3.2.2. Rotor integrated model control interface

For the comprehensive model, its output is similar to that of the ordinary high-precisi

on model, and the difference is mainly in the input, so the input is introduced in detail i

n the following.

Rotorcraft protocol parsing is the parsing of network packets received by CopterSim i

nto the instructions in Section 3.2.1. inSILInts is an 8-dimensional input that currently use

s only the 0th number instruction and the 1st number Offboard mode. Subsequent 6th and

 7th numbers are represented as integers of latitude and longitude in the Global coordinate

 system. In the figure below, the inSILInts vector is broken down into eight separate num

bers.

41

Each bit of the instruction has a corresponding meaning, so each bit needs to be furt

her parsed. In the following figure, Bitwise module is used to parse bits, and the 0th bit

is not used for the time being. The first bit identifies whether it is emulation mode. Whe

n the bit is 1, emulation mode is used; when the bit is 0, the hardware is in ring mode.

The controller in the integrated model takes effect only when emulation mode is used. Th

e second digit indicates whether it is unlocked. The other digits also include take-off, land

ing, and return functions. For details, see Section 3.2.2.

The following flags identify which offboard control information is available. The prot

ocol in Section 3.2.1 supports full PX4 offboard control, following which the most urgent

requirements of the current project are supported, including position, speed, yaw, yaw Ang

le rate.

Further, the actual position and speed values sent by offboard are analyzed as shown

in the figure below. In the figure above is to identify the corresponding value does not e

42

xist, while the figure below is the specific value. Currently only position, speed, yaw, yaw

 Angle rate are used. In the following parsing, the hasVel flag and the hasYawRate flag a

re used. When the two flags are false, it indicates that there is no input of speed and ya

w Angle rate, then the remote control mode will be switched. In remote control mode, 15

00 represents the desired speed or expected yaw Angle rate of 0.

3.2.3. Fixed wing integrated model control interface

Fixed wings and rotors follow mutually compatible protocols, but the mode of fixed

wings is different from that of rotors, because fixed wings cannot hover like quadrotors. T

he following figure shows the protocol analysis in the fixed-wing integrated model. Posito

n, Height and Hor are increased, and the behavior of take-off, return and landing is also

different from that of rotorcraft.

Take off, control altitude and speed. When the fixed wing receives the take-off comm

and, it takes off at a fixed pitch Angle, default 15°. The user can set the takeoff height,

and when the takeoff height is reached, the model will make a judgment and exit the tak

eoff mode. When the takeoff is successful, if no further operation instructions are received,

 it will continue to fly forward, and no adjustment of throttle, pitch, and roll will be mad

e.

Position, while controlling horizontal position and height. The user can directly specif

y the mode as position control through inSILInts, and the system can automatically trigger

 the position mode when returning or landing. In position mode, if the corresponding posi

tion is set, fly to the corresponding position first. After reaching the specified position, if

no next position is specified, it will hover automatically. In the return mode, it is essentia

lly the horizontal Position to return to the starting point and supports specifying the return

 height, so this function can be implemented using the Position mode. When landing, the

43

altitude of the aircraft will first be adjusted, and the AdjustHeight in the figure is the des

cription of this process. Adjusting the altitude of the aircraft is accomplished by circling,

and the horizontal position will also change during circling, so the position mode is also

used for control.

Height mode controls the altitude and airspeed, but does not control the horizontal po

sition, that is, the aircraft will only fly forward. Height mode is used during takeoff, and

will also be entered at the end of landing (when the aircraft has reached the correspondin

g altitude). Hor mode is to control the horizontal position separately. This pattern is suppo

rted by current models, but is generally less used.

Unlike rotorcraft, fixed wings are not free to control speed in all directions. However,

 you can set the rate in the horizontal direction. In the full protocol, the desired speed ha

s 3 components, and in fixed wings only the first component is used as the horizontal sp

eed.

44

3.3. Simplified comprehensive model based on particle model（R

ely on Python rotors to copy from the cluster API）

4. RflySim control protocol（Only the enterprise customi

zed version supports Redis）

4.1. General introduction

The external control usually obtains the state of the vehicle through Python or Simuli

nk, and sends control instructions according to the state of the vehicle. CopterSim is the c

ommunication hub for the entire platform. CopterSim supports different simulation modes,

and the components of the whole simulation system are quite different under different sim

ulation modes. In the same simulation mode, there are different communication modes, inc

luding UDP/MAVLink/Redis, etc. Different communication modes can support the number

of simulations, the specific degree of state information, stability, etc.

The diagram below is an overall block diagram of CopterSim interacting with Python/

Simulink. In terms of communication mode, three main modes UDP/MAVLink/Redis are s

upported, of which Redis is only supported in the enterprise customized version. In additio

n, two sub-modes, FULL/Simple, are also supported, and the size of packets in these two

modes is different. RflySim supports the traditional MAVLink message format, and MAVLi

nk messages can be forwarded over UDP or directly to the flight control through the seri

al port. The Simulink_DLL mode is the mode of the integrated model, in which the contr

oller is integrated in the CopterSim. And in Redis mode，

45

Python/Simulink

UDP收

CopterSim

UDP收

UDP发

UDP发 UDP20100+2n

UDP20101+2n

MAVLINK收 MAVLINK发（SITL）

MAVLINK收发 串口 飞控（HITL）

Simulink_ DLL收

UDP30100+2n

Simulink_ DLL发

Simulink_ DLL发 Simulink_ DLL收

UDP30101+2n

Redis收发 Redis收发
默认端口TCP6379

以20100系列数字为key

Redis收发TrueData Redis收发TrueData默认端口TCP6379

以30100系列数字为key

UDP20101+2n

MAVLINK发 MAVLINK收（SITL）UDP20100+2n

收ACTUATOR
_CONTROL_TARGET

UDP40101+2n PX4消息转发

4.1.1. Emulation modes supported by CopterSim

Simulation mode mainly refers to software in the loop, hardware in the loop, etc. Dif

ferent simulation modes often involve different components. For example, software in the l

oop relative to hardware in the loop does not require flight control hardware, and the inte

grated model relative to software in the loop does not need to run a linux subsystem.

The full CopterSim version supports four simulation modes: HITL = 0, SITL = 1, SI

TL_RFLY = 2, Simulink_DLL = 3. HITL indicates that the hardware is in the loop, and t

he flight control hardware needs to be connected to run this mode. SITL indicates softwar

e in the ring, and SITL_RFLY is also software in the ring. However, compared with SIT

L, the port configuration is optimized and port conflicts are not easy to occur. Simulink_

DLL is dedicated to comprehensive model simulation, that is, the controller is also built i

n the model, which is more suitable for large-scale cluster simulation.

4.1.2. Connection modes supported by CopterSim

The connection mode of CopterSim refers to the communication mode between Copte

rSim and other components. Currently, there are 8 supported modes and 6 conventional m

odes. UDP_Full = 0, UDP_Simple = 1, MAVLink_Full = 2, MAVLink_Simple = 3, MAV

Link_NoSend = 4, MAVLink_NoGPS = 5, Redis_Full = 6. Redis_Simple = 7.

46

UDP, MAVLINK and Redis are the three basic communication modes, and they are d

ivided into two sub-modes, Full and Simple, according to whether the packet is compact

or complete. The result is a combination of six general patterns. For large-scale clusters,

Redis_Simple is recommended.

4.2. Data Protocol

The platform defines some basic data structures related to control, which are independ

ent of the specific communication mode, that is, whether using UDP, MAVLink, or redis,

the data parsing follows these agreed formats.

4.2.1. outHILStateData

The outHILStateData structure is where CopterSim forwards the data estimated by PX

4, including timestamp, aircraft ID, location, speed, etc. In PX4, EKF2 converts the raw s

ensor data into a state estimate of the vehicle, and CopterSim forwards the data received

from PX4 to the upper layer application through the following data structure.

struct outHILStateData{ // mavlink data forward from Pixhawk

uint32_t time_boot_ms; //Timestamp of the message

uint32_t copterID; //Copter ID start from 1

int32_t GpsPos[3]; //Estimated GPS position，lat&long: deg*1e7, alt: m*1e3 and up is positi

ve

int32_t GpsVel[3]; //Estimated GPS velocity, NED, m/s*1e2->cm/s

int32_t gpsHome[3]; //Home GPS position, lat&long: deg*1e7, alt: m*1e3 and up is positive

int32_t relative_alt; //alt: m*1e3 and up is positive

int32_t hdg; //Course angle, NED,deg*1000, 0~360

int32_t satellites_visible; //GPS Raw data, sum of satellite

int32_t fix_type; //GPS Raw data, Fixed type, 3 for fixed (good precision)

int32_t resrveInit; //Int, reserve for the future use

float AngEular[3]; //Estimated Euler angle, unit: rad/s

float localPos[3]; //Estimated locoal position, NED, unit: m

float localVel[3]; //Estimated locoal velocity, NED, unit: m/s

float pos_horiz_accuracy; //GPS horizontal accuracy, unit: m

float pos_vert_accuracy; //GPS vertical accuracy, unit: m

float resrveFloat; //float,reserve for the future use

}

4.2.2. SOut2Simulator

The definition of SOut2Simulator is exactly the same as the new MavVehileInfo struc

ture added in Simulink, and can directly package the MavVehile3DInfo output data of the

new simulink model. These states are real data from the model.

struct SOut2Simulator {

 int copterID; //Vehicle ID

 int vehicleType; //Vehicle type

47

 double runnedTime; //Current Time stamp (s)

 float VelE[3]; //NED vehicle velocity in earth frame (m/s)

 float PosE[3]; //NED vehicle position in earth frame (m)

 float AngEuler[3]; //Vehicle Euler angle roll pitch yaw (rad) in x y z

 float AngQuatern[4]; //Vehicle attitude in Quaternion

 float MotorRPMS[8]; //Motor rotation speed (RPM)

 float AccB[3]; //Vehicle acceleration in body frame x y z (m/s/s)

 float RateB[3]; //Vehicle angular speed in body frame x y z (rad/s)

 double PosGPS[3]; //vehicle longitude, latitude and altitude (degree,degree,

m)

 }

4.2.3. inHILCMDData

inHILCMDData is the key data structure for the underlying control of the system. Th

e designation of copterID allows the same Simulink program to control multiple machines,

 while the designation of mode and flag allows the user to send more upper-level instruct

ions, such as mode switching, locking, etc. ctrls are the control quantity, usually the pulse

width of the PWM wave.

struct inHILCMDData{

 uint32_t time_boot_ms;

 uint32_t copterID;

 uint32_t modes;

 uint32_t flags;

 float ctrls[16];

};

4.2.4. outHILStateShort

struct outHILStateShort{

 int checksum; //校验位 1234567890

 int32_t gpsHome[3];

 float AngEular[3];

 float localPos[3];

 float localVel[3];

48

}

4.2.5. inOffboardShortData（Minimal control protocol, su

pported by CopterSim in UDP/Redis Simple mode）

struct inOffboardShortData{

 int checksum;

 int ctrlMode;

 float controls[4];

}

checksum-- Check bit 1234567890, a fixed value;

ctrlMode-- Select the mode. For details, see the following table;

controls[4]-- Four digit control quantity.

ctrlMode Supported control mode

Pattern lab

el

description

0 Velocity mode in navigation coordinate system [vx,vy,vz, yaw rate]

1 Velocity mode in body coordinate system [vx,vy,vz, yaw rate]

2 Position mode in navigation coordinate system [x,y,z, yaw]

3 Position mode in body coordinate system [x,y,z, yaw]

4 Attitude throttle control command [roll, pitch, yaw (radian), throttle (0~1)],

can be automatically unlocked, can automatically enter the OffBoard mode

5 Attitude throttle increment control command [roll, pitch, yaw, throttle incre

ment]- can be automatically unlocked, can automatically enter OffBoard m

ode

6 Acceleration control mode [ax,ay,az,yaw]

7 Acceleration control mode [ax,ay,az,yaw rate]

8 Acceleration control mode [ax,ay,az,yaw rate]

9 Unlock the mode shown [Unlock,-,-,-]

10 Set the speed and hover radius of the fixed wing aircraft, [speed, radius,

-, -]

11 Indicates Mavlink take-off command, automatic unlock, navigation coordina

te system position [x, y, z, -]

12 Indicates Mavlink take-off command, automatic unlock, GPS coordinate sys

tem position [latitude, longitude, altitude, -]

49

13 Speed altitude heading command, automatically unlock and enter offBoard

mode, GPS coordinate position [speed, altitude, heading, -]

14 Position mode in Global coordinates, GPS coordinates position [lat_int, lon

_int, alt_float, yaw_float]

30 Used for VTOL mode switching, representing flight mode switching instruc

tion, corresponding to mavlink command MAV_CMD_DO_VTOL_TRANSI

TION, controls[0] indicates the State bit. Define see link (https://mavlink.io

/en/messages/common.html#MAV_VTOL_STATE).

controls[1] indicates the Immediate position (1: Force immediate front swit

ch, 0: normal transition).

4.3. Communication ports

4.3.1. UDP14540 series +TCP4560 series（communication

with PX4, PX4 default port when the software is s

imulated in the loop）

The UDP14540 series ports are used by PX4 for software-in-the-loop simulation by d

efault, with UDP ports for sending less important data and TCP ports for sending more i

mportant data. See Section 3.1.1 for a more detailed description.

4.3.2. UDP16540 series (communication with PX4, RflySi

m private port during ring simulation)

The UDP16540 series port is a custom series port of the RflySim platform, which ca

n support a larger number of vehicles than the PX4 default port/See Section 3.1.1 for a

more detailed description.

4.3.3. Serial port（communication with PX4, hardware-in

-the-loop emulation port）

When a MAVLink message packet is transmitted over a serial port, parameters such a

s the baud rate can be set. When the baud rate is small (less than 115200), the message

sending frequency decreases. Some messages are not sent directly.

50

4.3.4. UDP20100 series (Python/Simulink to obtain status

information and issue control commands)

The following figure is the port information of the Python/Simulink program to intera

ct with CopterSim, and Redis can be supported in the enterprise customized version. The

20100 series port refers to python/Simulink sending messages to CopterSim using UDP201

01+2n, where n is the ID-1 of the aircraft (assuming ID is numbered from 1), and receivi

ng messages from CopterSim using UDP20100+2n. The messages sent by Python/Simulink

to CopterSim include instructions, Offboard position, speed, acceleration control messages,

etc. Python/Simulink receives messages from CopterSim mainly about the current aircraft p

osition, speed and other information, which can be used for closed-loop control.

Python/Simulink

UDP收

CopterSim

UDP收

UDP发

UDP发 UDP20100+2n

UDP20101+2n

MAVLINK收 MAVLINK发（SITL）

MAVLINK收发 串口 飞控（HITL）

Simulink_ DLL收

UDP30100+2n

Simulink_ DLL发

Simulink_ DLL发 Simulink_ DLL收

UDP30101+2n

Redis收发 Redis收发
默认端口TCP6379

以20100系列数字为key

Redis收发TrueData Redis收发TrueData默认端口TCP6379

以30100系列数字为key

UDP20101+2n

MAVLINK发 MAVLINK收（SITL）UDP20100+2n

Python从30101+2n读数据时，实际上读的是发给UE的数据。

收ACTUATOR
_CONTROL_TARGET

UDP40101+2n PX4消息转发

4.3.5. UDP30100 Series (Get True status information or

issue control commands through inSIL)

The UDP30100 series port is used to obtain True status information or send control c

51

ommands through inSIL. True information refers to the true position and speed of the veh

icle, which can be directly obtained during simulation. The inSIL sends control commands,

 which are currently used to control the integrated model. (Currently fault injection also u

ses this port, so the control synthesis model and fault injection cannot be used simultaneo

usly).

4.3.6. UDP40100 Series (Get User-Defined messages)

The UDP40100 port is used to obtain user-defined messages. Currently, it is mainly u

sed to obtain the ACTUATOR_CONTROL_TARGET message, which contains the pulse wi

dth of the PWM wave.

4.3.7. TCP6379（Redis port）

This is the port of Redis communication, when supporting multiple aircraft, Redis use

s the Key to distinguish between different aircraft。

4.4. RflySim UDP protocol

The platform can send control commands through UDP, which is a simplification of t

he MAVLink protocol, and users can use the regular control interface through the protocol.

The UDP mode can be UDP_Full or UDP_Simple. The biggest difference between U

DP_Full and UDP_Simple is the degree of data simplification. The packet size of UDP_Si

mple is smaller than that of UDP_Full. For CopterSim, use port 20100+2n to receive mes

sages and port 20101+2n to send messages, where n=0,1,2... .

The platform can send control commands through UDP, which is a simplification of t

he MAVLink protocol, and users can use the regular control interface through the protocol.

The UDP mode can be UDP_Full or UDP_Simple. The biggest difference between U

DP_Full and UDP_Simple is the degree of data simplification. The packet size of UDP_Si

mple is smaller than that of UDP_Full. For CopterSim, use port 20100+2n to receive mes

sages and port 20101+2n to send messages, where n=0,1,2... .

4.4.1. CopterSim UDP_Simple

UDP_Simple mode is suitable for cluster development and provides

the simplest implementation for basic position and speed control. In

UDP_Simple mode, the received control instructions are described by i

nOffboardShortData. Contains checksum, ctrlMode, and four float contr

ols[4]. ctrlMode can have multiple protocols (RflyUdpFast.cpp and Cop

52

terSim should be changed). ctrlMode If set to <0 (less than 0), it in

dicates that the command is empty and the module will not release mes

sages. The following table lists the protocols supported by ctrlMode.

In UDP_Simple mode, once an inOffboardShortData message is receiv

ed, Copter automatically sends a message to PX4 to unlock and enter O

ffboard mode. This simplifies the process of user control of the airc

raft。

struct inOffboardShortData{

 int checksum; // Check bit 1234567890

 int ctrlMode; // mode selection

 float controls[4]; // Four-bit control quantity

}

The above control mode is used to send control commands to the PX

4. Usually, when the control algorithm calculates the control comman

d, it needs to rely on the current position and speed information of

the vehicle. The UDP_Simple schema provides the data structure to ret

rieve this information.

As shown below, UDP_Simple mode receives simplified data from Cop

terSim. Specifically, the checksum needs to be 1234567890 to verify t

hat the data is correct. gpsHome aircraft take-off point longitude an

d latitude data. The Euler Angle of an AngEular aircraft, pitch roll

yaw, in degrees. localPos The relative coordinates of the aircraft wi

th respect to the take-off point, in northeast earth coordinate syste

m, in meters. localVel Speed of the aircraft, in m/s. gpsHome is an i

nt, first obtain the degree (multiplied by 1e-7) degree (multiplied b

y 1e-7) meters (multiplied by 1e-3) format, and then use the module o

f Simulink, combined with the unified GPS origin, can obtain the offs

et position of the aircraft relative to the unified GPS origin, combi

ned with localPos, The real-time position of the relative uniform ori

gin of the aircraft can be obtained.

struct outHILStateShort{

 int checksum; //校验位 1234567890

 int32_t gpsHome[3];

 float AngEular[3];

 float localPos[3];

 float localVel[3];

}

53

As can be seen from the above description, UDP_Simple mode only provides the sim

plest instructions and obtains the simplest information.

In order for users to fully support the Offboard control protocol in Section 2.2.2, the

UDP_Full mode is designed. In UDP_Full mode, the Offboard control message is the com

plete MVLINK protocol, and UDP only forwards the message. However, in UDP_Full mo

de, the messages received by the user are still greatly simplified compared to MAVLINK.

4.4.2. CopterSim UDP_Full

In UDP_Full mode, the system automatically unlocks and enters the Offboard mode

when receiving Offboard messages. Therefore, in UDP_Full mode, the user does not need

to manually send instructions to unlock and enter the Offboard mode. The data received i

n UDP_Full mode is shown in 4.1.1 and is represented by outHILStateData. It includes p

osition and speed in GPS coordinate system and position and speed in NED coordinate sy

stem. In actual use, it is not necessary to parse out all the data in outHILStateData, only

the data of interest can be extracted. outHILStateData is the result of sensor data processe

d by PX4 EKF2.

For CopterSim to transmit UDP data, the packet needs to be further encapsulated. Th

e following is the data structure of netDataShortShort, which supports a maximum of 112

data. It can be seen that netDataShortShort fully supports the transmission of outHILState

Data data.

typedef struct _netDataShortShort {

TargetType tg;

int len;

char payload[112];

}netDataShortShort;

The user can also obtain real data, SOut2Simulator, which can be read in both UDP_

Simple mode and UDP_Full mode, because this data uses additional ports. The correspond

ing incoming port of CopterSim is 30100 and the outgoing port is 30101. SOut2Simulator

is real state information from the model, without added noise, which is also data that can

only be obtained during the simulation.

Similarly, the data in SOut2Simulator is transferred through the netDataShort structure,

 which means that the total length of all the data in SOut2Simulator is 192 bytes.

typedef struct _netDataShort {

 int tg;

 int len;

 char payload[192];

}netDataShort;

54

4.4.3. CopterSim Redis_Simple/Full

4.4.4. Simulink control mode Full/Simple/UltraSimple

4.4.5. Python control mode（Full support for CopterSim

mode）

5. The MAVLink protocol

5.1. Introduction to MAVLin

MAVLink (Micro Air Vehicle Link) is a communication protocol for small unmanned

vehicles, first released in 2009. The protocol is widely used in the communication betwee

n Ground Control Station (GCS) and Unmanned vehicles, as well as in the internal comm

unication between the onboard computer and Pixhawk. The protocol defines the rules of p

arameter transmission in the form of message library. The MAVLink protocol supports a v

ariety of vehicles such as unmanned fixed-wing aircraft, unmanned rotorcraft, and unmanne

d vehicles. Using document official website: https://mavlink.io/en/messages/common.html.

5.1.1. Format of the MAVLink packet

MAVLink is divided into MAVLink 1 and MAVLink 2. MAVLink 2 offers more functiona

lity and security than MAVLink 1, especially in applications that require more complex co

mmunications and higher security. However, it is important to note that MAVLink 2 May

require more computing resources and bandwidth to support variable-length packet and me

ssage signing, so there may be trade-offs in resource-constrained systems.

The packet format of MAVLink 1 is as follows:

https://mavlink.io/en/messages/common.html

55

MAVLink 2 的数据包如下：

5.1.2. MAVLink data parsing

All byte streams are stored in the buffer, and byte data in the buffer is read successively.

 When the STX flag bit is encountered (the flag bit of MAVLink v1 is 0xFE, and the fl

ag bit of v2 is 0xFD), a message is recognized until the end of the message. If the mess

age verification is correct, the message is sent to the processor. Given a byte stream buffe

r of a certain length, the length of which is length, the onMavLinkMessage function is ex

ecuted every time a mavlink packet is parsed through the following script

for(int i = 0 ; i < length ; ++i){

msgReceived = mavlink_parse_char(MAVLINK_COMM_1, (uint8_t)buffer[i], &mes

sage, &status);

 if(msgReceived){

 emit onMavLinkMessage(message);

 }

}

void onMavLinkMessage(mavlink_message_t message); It is a processing function after

 getting a MAVLink message packet, which needs to identify the purpose of the current p

acket (heartbeat packet, GPS position, attitude, etc.) according to the ID of the message, a

nd extract the data of interest.

The parsing function is implemented as follows, jumping to the corresponding _decod

e function according to message.msgid to decode the data

void onMavLinkMessage(mavlink_message_t message){

 switch (message.msgid){

 case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:{

 mavlink_global_position_int_t gp;

 mavlink_msg_global_position_int_decode(&message, &gp);

 outHilData.time_boot_ms = m_LastReceiveMavMsg;

 outHilData.GpsPos[0]=gp.lat;

 outHilData.GpsPos[1]=gp.lon;

 outHilData.GpsPos[2]=gp.alt;

 outHilData.relative_alt = gp.relative_alt;

56

 outHilData.GpsVel[0]=gp.vx;

 outHilData.GpsVel[1]=gp.vy;

 outHilData.GpsVel[2]=gp.vz;

 outHilData.hdg = gp.hdg;

 break;

 }}}

In QGC's MAVLink Inspector page, you can browse all MAVLink packets sent by Pi

xhawk to see the frequency of each packet and the specific value.

[wxme] start ->

You can modify the MavlinkConsolePage.qml file to change the page layout. Related

information is processed using QGCMAVLinkMessage

->end[wxme]

5.2. Common MAVLink messages

SET_ATTITUDE_TARGET, SET_POSITION_TARGET_LOCAL_NED, and SET_POSIT

ION_TARGET_GLOBAL_INT are the three most commonly used external control message

s. They are described in detail in Section 2.2.1.

5.2.1. HEARTBEAT

HEARTBEAT is a heartbeat packet. A heartbeat message indicates that the system or

component is present and responding. The type and Autopilot fields (along with the messa

57

ge component ID) allow the receiving system to appropriately process further messages fro

m this system (for example, configuring the user interface according to Autopilot). The mi

cro service document at https://mavlink.io/en/services/heartbeat.html.

name data type description

type uint8_t Vehicle or component type. For flight control components, this ref

ers to the vehicle type (quadcopter, helicopter, etc.). For other co

mponents, it refers to the type of component (e.g. camera, head,

etc.). This information should be used first to identify the compon

ent type rather than the component ID.

autopilot uint8_t The flight control type, which for PX4 is MAV_AUTOPILOT_PX

4, is a fixed value.

base_mode uint8_t MAVLink basic system mode bitmap, including system u

nlock, manual input, HIL, self-stabilization, autonomous

and other modes.

custom_mode uint32_t Flight control defines modes, such as PX4, which define

s preparation, take-off, hover, landing, etc.

system_status uint8_t System status, system startup, correction, failsafe, etc

mavlink_versio

n

uint8_t MAVLink version

HEARTBEAT messages displayed in QGC

5.2.2. ATTITUDE（Attitude - Euler Angle）

ATTITUDE is the Euler Angle of attitude. Attitude in the carrier coordinate system (r

58

ight-handed coordinate system, Z-axis down, Y-axis right, X-axis forward, ZYX sequence,

body coordinate system).

naem data type units description

time_boot_ms uint32_t ms The timestamp is calculated from the boot of the syste

m

roll float rad Rolling Angle [-ℼ, ℼ]

pitch float rad Angle of pitch [-ℼ, ℼ]

yaw float rad Yaw Angle [-ℼ, ℼ]

rollspeed float rad/s Roll Angle rate

pitchspeed float rad/s Pitch Angle rate

yawspeed float rad/s Yaw Angle rate

The ATTITUDE message displayed in QGC

5.2.3. ATTITUDE_QUATERNIO

ATTITUDE_QUATERNION is the attitude quaternion. The attitude expressed in the c

arrier coordinate system (right-handed coordinate system, Z axis down, X axis forward, Y

axis right) is expressed in quaternion form. The order of the quaternions is w, x, y, z, an

d the zero rotation will be expressed as (1 0 0 0 0).

name data type units description

time_boot_ms uint32_t ms The timestamp is calculated from the boot of the syste

m

q1 float w, real part, square root of the cosine of half t

he Angle of rotation

q2 float x, (x,y,z) indicates the direction of the axis of

59

rotation

q3 float y

q4 float z

rollspeed float rad/s Roll Angle rate

pitchspeed float rad/s Pitch Angle rate

yawspeed float rad/s Yaw Angle rate

QUATERNION as shown in QGC

5.2.4. LOCAL_POSITION_NED

LOCAL_POSITION_NED indicates the position and velocity in the NED coordinate s

ystem. Local locations that have been filtered (for example, incorporating computer vision

and accelerometer data). The coordinate system is right-handed with the Z-axis down (aero

-coordinate system, NED/north-east-down convention).

name data type units description

time_boot_ms uint32_t ms The timestamp is calculated from the boot of the syste

m

x float m x position

y float m y position

z float m z position

vx float m/s Velocity in x direction

vy float m/s Velocity in y direction

vz float m/s Velocity in z direction

60

The LOCAL POSITION NED shown in QGC

5.2.5. GLOBAL_POSITION_IN

GLOBAL_POSITION_INT. Filtered global position (for example, integrated GPS and

accelerometer data). The position is represented in the GPS coordinate system (right-hande

d coordinate system, z-axis up). It is designed to be a scaled integer message because the

resolution of floating-point numbers is not enough to meet the requirements. The velocity

is still in NED coordinates。

name data type units description

time_boot_ms uint32_t ms The timestamp is calculated from the boot of the syste

m

lat int32_t degE7 latitude

lon int32_t degE7 longitude

alt int32_t mm altitude

relative_alt int32_t mm Height from the ground, upward is positive

vx int16_t cm/s Velocity in the x direction, positive to the north

vy int16_t cm/s Velocity in the y direction, positive to the east

vz int16_t cm/s Velocity in the z direction, positive down

hdg int16_t cdeg Vehicle yaw Angle, ranging from 0.0 degrees to

 359.99 degrees, if unknown, can be set to: UI

NT16_MAX. cdeg is the magnitude. One degree

 is equal to 100.

61

The GLOBAL POSITION INT displayed in QGC

5.2.6. ACTUATOR_OUTPUT_STATUS

ACTUATOR_OUTPUT_STATUS. The raw value of the servo output (for example, on

Pixhawk, from the MAIN and auxiliary ports). This message replaces SERVO_OUTPUT_R

AW.

name data type units description

time_uesc uint64_t us The timestamp is calculated from the boot of the syste

m

active uint32_t

actuator float[32] The value of the servo/motor output array. A z

ero value indicates an unused channel.

5.2.7. ATTITUDE_TARGE

ATTITUDE_TARGET. Reports the current desired attitude of the vehicle as specified

by the autopilot. If the vehicle is controlled by sending a SET_ATTITUDE_TARGET mess

age, this should match the command sent.

name data type units description

time_boot_ms uint32_t ms The timestamp is calculated from the boot of the system

type_mask uint8_t Desired attitude bitmap, indicating which desired

attitude information should be ignored

q float[4] Expected quaternion (w, x, y, z order, zero rotati

on corresponding to 1, 0, 0, 0)

body_roll_rate float rad/s Desired roll Angle rate

body_pitch_rate float rad/s Desired pitch Angle rate

62

body_yaw_rate float rad/s Expected yaw Angle rate

thrust float Expected throttle

QGC 中显示的 ATTITUDE_TARGET

5.2.8. POSITION_TARGET_LOCAL_NE

POSITION_TARGET_LOCAL_NED. Reports the current desired vehicle position, spee

d, and acceleration as specified by the autopilot. If the aircraft is controlled in this way b

y sending SET_POSITION_TARGET_LOCAL_NED messages, then these reports should m

atch the commands sent. POSITION_TARGET_LOCAL_NED also has a value when S

ET_POSITION_TARGET_LOCAL_NED is not set, Because PX4's built-in Navigator can

 publish POSITION_TARGET_LOCAL_NED.

name data type units description

time_boot_ms uint32_t ms system time

coordinate_frame uint8_t
 The most commonly used coord

inate system is MAV FRAME

LOCAL NED = 1

type_mask uint16_t The bit flag indicates that contr

ol information should be ignore

d

x float m x position in NED coordinates

y float m y position in NED coordinates

z float m NED coordinate height

vx float m/s NED coordinate system velocity

in the x direction

vy float m/s NED coordinate system velocity

in the y direction

63

vz float m/s NED coordinate system velocity

in the z direction

afx float m/s2 NED coordinates acceleration or

 force in the x direction

afy float m/s2 NED coordinates acceleration or

 force in the y direction

afz float m/s2 NED coordinates acceleration or

 force in the z direction

yaw float rad yaw angle

yaw_rate float rad/s Yaw Angle rate

POSITION_TARGET_LOCAL_NED shown in QGC

5.2.9. POSITION_TARGET_GLOBAL_IN

POSITION_TARGET_GLOBAL_INT. Reports the current desired vehicle position, spee

d, and acceleration as specified by the autopilot. If the aircraft is controlled in this way b

y sending SET_POSITION_TARGET_GLOBAL_INT messages, then these reports should m

atch the commands sent.

name data type units description

time_boot_ms uint32_t ms system time

coordinate_frame uint8_t
 The most commonly used FRA

ME is MAV FRAME GLOBAL

 INT = 5

64

type_mask uint16_t The bit flag indicates that contr

ol information should be ignore

d

lat_int int32_t degE7 WGS84 lower x position

lon_int int32_t degE7 WGS84 lower y position

alt float m Altitude, or relative altitude, dep

ends on the coordinate system

vx float m/s NED coordinate system velocity

in the x direction

vy float m/s NED coordinate system velocity

in the y direction

vz float m/s NED coordinate system velocity

in the z direction

afx float m/s2 NED coordinates acceleration or

 force in the x direction

afy float m/s2 NED coordinates acceleration or

 force in the y direction

afz float m/s2 NED coordinates acceleration or

 force in the z direction

yaw float rad yaw angle

yaw_rate float rad/s Yaw Angle rate

POSITION TARGET GLOBAL INT displayed in QGC

65

5.2.10. HOME_POSITIO

HOME_POSITION contains home location information. The home location is the defa

ult location to which the system will return and land. This position must be set automatic

ally by the system during takeoff or can be set explicitly using the MAV_CMD_DO_SET

_HOME command. The global and local positions encode the positions in their respective

coordinate systems, while the q parameter encodes the orientation of the surface. Under no

rmal circumstances, it describes the heading and slope of the terrain, and the aircraft can

use this information to adjust its flight en route to landing. A 3D vector on the way to l

anding describes the point to which the system should fly in normal flight mode, and the

n performs a landing sequence along that vector. Note: This message can be requested by

sending the MAV_CMD_REQUEST_MESSAGE and setting param1=242 (or the deprecated

 MAV_CMD_GET_HOME_POSITION command).

name data type units description

latitude int32_t degE7 WGS84 lower x position

longitude int32_t degE7 WGS84 lower y position

altitude int32_t mm Altitude, up is positive

x float m NED coordinate system position x

y float m NED coordinate system position y

z float m NED coordinate system position z

q float[4] The quaternion represents the take-off pos

ition of the world to the surface normal

and the heading change. Used to indicate

the course and grade of the ground. If an

 accurate heading and quaternion of surfa

ce slope cannot be provided, all fields sh

ould be set to NaN.

approach_x float m The local X position near the end of the

vector. Multi-rotor vehicles should set this

 position according to their takeoff path.

A fixed-wing vehicle that lands on grass

should be set up in the same way as a

multi-rotor vehicle. A fixed-wing aircraft l

anding on a runway should set it in the

opposite direction to takeoff, assuming th

66

at takeoff starts from the threshold/touchd

own area of the runway.

approach_y float m ditto

approach_z float m ditto

time_usec uint64_t us Timestamp (UNIX epoch time or time sin

ce system boot). The receiving end can i

nfer the format of the timestamp (since J

anuary 1, 1970 or since the system starte

d) by examining the size of the number.

The HOME POSITION displayed in QGC

5.2.11. HIL_ACTUATOR_CONTROLS（PX4 to Sim co

ntrol output）

HIL_ACTUATOR_CONTROLS. From the autopilot to the simulator. Message for Har

dware in the Loop (HIL) control output (used instead of HIL_CONTROLS).

name data type units description

time_uecs uint64_t us Timestamp (UNIX epoch time or time since system boot). T

he receiving end can infer the format of the timestamp (sinc

e January 1, 1970 or since the system started) by examining

 the size of the number.

controls float[16] The control output ranges from -1 to 1. Channel all

ocation depends on the configuration of the emulati

on hardware.

67

mode uint8_t System status, including introduction status.

uint8_t uint64_t This is a flag bit field where a 1 indicates emulatio

n using a lock step.

HIL ACTUATOR CONTROLS shown in QGC

5.2.12. HIL_SENSOR（Sim to PX4 sensor information）

HIL_SENSOR. IMU (Inertial Measurement Unit) readings are expressed in the Interna

tional System of Units (SI units) in the NED (North-east-lower) body coordinate system.

This means that measurements such as acceleration and angular velocity are measured in

meters per second ² and radians per second, relative to the forward, right, and down direc

tions of the vehicle.

name data typ

e

units description

time_usec uint64_t us Timestamp (UNIX epoch time or time since syst

em boot). The receiving end can infer the forma

t of the timestamp (since January 1, 1970 or sin

ce the system started) by examining the size of

the number.

xacc float m/s2 Acceleration in x direction

yacc float m/s2 Acceleration in y direction

zacc float m/s2 Acceleration in z direction

xgyro float rad/s Angular velocity in the x direction

ygyro float rad/s Angular velocity in the y direction

zgyro float rad/s Angular velocity in the z direction

xmag float gauss Magnetic field strength in the x direction

ymag float gauss Magnetic field strength in the y direction

68

zmag float gauss Magnetic field strength in the z direction

abs_pressure float hPa absolute pressure

diff_pressure float hPa Differential pressure

pressure_alt float pressure altitude

temperature float air temperature

fields_updated uint32_t This is a bitmap that represents the fields

 that have been updated since the last m

essage. Each bit in a bitmap usually repr

esents a field, and the corresponding bit i

s set to 1 when the corresponding field h

as been updated, or 0 otherwise. The use

of this bitmap can help efficiently transmi

t and identify which fields have changed

in communication without having to trans

mit all the data for the entire message.

id uint8_t Sensor ID (indexed from zero). When de

aling with multiple sensor inputs, this ID

can be used to distinguish between differ

ent sensors. This helps the system identif

y and distinguish data from different sour

ces, especially in multi-sensor environmen

ts. Each sensor is usually assigned a uniq

ue ID for identification and data processi

ng.

Note: Data passed from the simulation model to PX4 cannot be displayed in QGC.

5.2.13. HIL_GPS（Sim to PX4 GPS information）

HIL_GPS.Global location, returned by the Global Positioning System (GPS). This is n

ot a global position estimate of the system, but rather a raw sensor value. To get a globa

l location estimate for the system, look at the GLOBAL_POSITION_INT message. This m

essage contains the raw location information received directly from the GPS, rather than t

he global location that has been processed and estimated.

name data typ

e

units description

time_usec uint64_t us Timestamp (UNIX epoch time or time since syst

69

em boot). The receiving end can infer the forma

t of the timestamp (since January 1, 1970 or sin

ce the system started) by examining the size of

the number.

fix_type uint8_t 0-1: no fix, 2: 2D fix, 3: 3D fix. Some

applications will not use the value of this

 field unless it is at least 2, so always fi

ll in the correction value correctly. This f

ield is commonly used to indicate the po

sitioning quality of the GPS receiver, wit

h 0 indicating no positioning, 2 indicating

 2D positioning, and 3 indicating 3D pos

itioning. In some applications, location inf

ormation is only used if the GPS has at

least a two-dimensional correction, so wh

en reporting GPS location information, en

suring that the correction field is filled in

 correctly is important for the accuracy o

f the data.

lat int32_t degE7 WGS84 latitude

lon int32_t degE7 WGS84 Longitude

alt int32_t mm Altitude, up is positive.

eph uint16_t GPS horizontal position accuracy factor

(HDOP, no unit * 100). If it is unknown,

 it can be set to UINT16_MAX. HDOP i

s a factor that represents the accuracy of

GPS positioning, which is usually a unitl

ess decimal number multiplied by 100 to

obtain an integer value. A lower HDOP v

alue indicates a higher positioning accurac

y, while a higher HDOP value indicates a

 lower positioning accuracy. If you do no

t know the GPS horizontal position precis

ion factor, you can set this field to UINT

16_MAX to indicate the unknown value.

70

epv uint16_t GPS vertical position accuracy factor (VD

OP, none unit * 100). If it is unknown, i

t can be set to UINT16_MAX. VDOP is

a factor that represents the accuracy of G

PS positioning, which is usually a unitles

s decimal number multiplied by 100 to o

btain an integer value. A lower VDOP va

lue indicates a higher vertical positioning

accuracy, while a higher VDOP value ind

icates a lower vertical positioning accurac

y. If you do not know the GPS vertical

position accuracy factor, you can set this

field to UINT16_MAX to indicate unkno

wn values.

vel uint16_t cm/s GPS ground speed. If it is unknown, it c

an be set to UINT16_MAX, which indica

tes an unknown value. GPS ground speed

 represents the speed at which the device

 is moving on the ground as measured b

y the GPS receiver. This value is usually

expressed in meters per second (m/s) and

indicates the speed of the device. If an e

xact value for the ground speed is not av

ailable, the field can be set to UINT16_

MAX to represent an unknown value.

vn int16_t cm/s The northbound component of GPS speed

 in the Earth's fixed NED coordinate syst

em.

ve int16_t cm/s The eastern component of GPS speed in

the Earth's fixed NED coordinate system.

vd int16_t cm/s The downward component of GPS speed

in the Earth's fixed NED coordinate syste

m.

cog uint16_t cdeg Ground heading (not heading, but directio

n of movement), ranging from 0.0 degree

71

s to 359.99 degrees. If it is unknown, it

can be set to UINT16_MAX, which indic

ates an unknown value. Ground heading r

efers to the direction of the device's mov

ement relative to the ground, rather than

the device's orientation. Usually expressed

 in degrees, it indicates the direction of t

he device relative to the true north directi

on. If the exact value of the ground cour

se cannot be obtained, the field can be s

et to UINT16_MAX to represent an unkn

own value.

satellites_visible uint8_t Number of visible satellites

id uint8_t GPS ID number

yaw uint16_t cdeg The yaw Angle of the vehicle relative to

the north of the Earth, where zero is not

available and 36,000 is used to represent

the true north direction. This Angle repre

sents the orientation of the vehicle relativ

e to the true north of the Earth, usually

expressed in hundredths of a degree (cent

idegrees). If the exact value of the yaw

Angle cannot be obtained, it can be set t

o zero, indicating unavailability, or set to

36,000, indicating true north. This value i

s used to indicate the orientation of the

vehicle with respect to the Earth's North

Pole.

Note: Data passed from the simulation model to PX4 cannot be displayed in QGC.

5.3. Microservice

The high-level protocol adopted by the MAVLink system is called microservices, whic

h are used for better interoperation. For example, QGroundControl, ArduPilot, and PX4 au

topilot all share a common command protocol for sending peer-to-peer messages that requi

re confirmation.

Microservices are used to exchange many types of data, including parameters, tasks, trac

72

ks, images, and other files. If the data is much larger than the capacity of a single messa

ge, the service will define how to split and reassemble the data, and how to ensure that a

ny lost data is retransmitted. Other services provide command validation and/or error repor

ting.

Most services use a client-server model, where GCS (the client) initiates the request and t

he vehicle (the server) responds to the data. MAVLink defines the following microsuits: H

eartbeat/Connection protocol, Task protocol, Parameter protocol, Extended parameter protoc

ol, Command protocol, Manual control (joystick) protocol, Camera protocol, Camera Defini

tion, Universal Protocol v2, Arm License protocol, Image Transfer Protocol, File Transfer

Protocol (FTP), login target protocol, Ping Protocol, path planning protocol (trajectory inter

face), battery protocol, terrain protocol, tunnel protocol, open drone ID protocol, high laten

cy protocol, Component Metadata Protocol (WIP), payload protocol, Traffic Management

(UTM/ADS-B), Event Interface (WIP), time synchronization protocol, etc. Specific visible

athttps://mavlink.io/en/services/。

This section mainly introduces several protocols involved in the secondary developmen

t process of QGC

5.3.1 Heartbeat/connection protocol

The heartbeat protocol is used to notify the presence of a system (QGC or other ope

rating software) on the MAVLink network, along with its system and component ID, vehic

le type, flight stack, component type, and flight mode.

The heartbeat protocol can perform the following functions: 1. Discover systems conn

ected to the network and infer when they are disconnected. If a component regularly recei

ves HEARTBEAT messages, it is considered to be connected to the network. If the expect

ed message is not received, the component is considered disconnected. 2, appropriately pro

cess additional messages from the component based on the component type and other prop

erties (for example, layout of the GCS interface based on vehicle type). 3. Route message

s to systems on different interfaces.

The HEARTBEAT protocol must be defined at the broadcast rate HEARTBEAT, as w

ell as defining how many messages the system is "missing" before they are considered ti

meout/disconnected from the network. On an RF telemetry link, for example, a component

 typically posts its heartbeat at a frequency of 1 Hz, and if four or five messages are not

 received, the other system is considered disconnected.

If the component does not detect another system, it can choose not to send or broadc

ast information on the channel (other than the channel HEARTBEAT), and it will continue

 to send messages to the system when the heartbeat is received. Therefore, the system mu

https://mavlink.io/en/services/

73

st: (1) broadcast the heartbeat even if the remote system is not commanded; (2) Do not b

roadcast heartbeats while they are in a failed state (that is, do not publish heartbeats from

 a separate thread that does not know the state of the rest of the component).

The specific code for connecting to QGroundControl can be found in multivehicleMan

ager.cc (see Resources void MultiVehicleManager::_vehicleHeartbeatInfo)。

See the detailed description of related protocols https://mavlink.io/en/services/heartbeat.h

tml

5.3.2 Task protocol

Mission sub-protocols enable GCS or developer apis to exchange mission (flight plan),

 geofencing, and safety point information with UAVs/components.

The protocol covers: (1) Upload, download, clear tasks, set/get the current task item

number, and receive notifications when the current task item changes. (2) Message types a

nd enumerations used to exchange task items. (3) Task items common to most systems ("

MAVLink command "). The protocol supports re-requesting messages that have not yet arr

ived, allowing tasks to be reliably transmitted over lossy links.

The agreement mainly includes three types of "missions" : flight plans, geofencing, an

d assembly/security points.

Flight plan Task type Command format: 1. NAV command (MAV_CMD_NAV_*) for

navigation/movement (for example, MAV_CMD_NAV_WAYPOINT, MAV_CMD_NAV_LAN

D) 2. DO command (MAV_CMD_DO_*) for immediate operation. For example, change th

e speed or activate the servo system (for example, MAV_CMD_DO_CHANGE_SPEED). T

he CONDITION command (MAV_CMD_CONDITION_*) is used to change the execution

of the task based on conditions-for example, to pause the task for a period of time before

 executing the next command (MAV_CMD_CONDITION_DELAY).

Geofencing task type Command format: prefix MAV_CMD_NAV_FENCE_ (for examp

le, MAV_CMD_NAV_FENCE_RETURN_POINT).

Aggregation point Task type Command format: Only one aggregation point MAV_CM

D: MAV_CMD_NAV_RALLY_POINT.

The task item () is transmitted/encoded in the MISSION_ITEM_INTMAV_CMD messa

ge. The message includes fields that identify a specific task item (the command ID) and

up to seven optional parameters specific to the command.

Can in SRC/QGroundControl MissionManager/PlanManager. See specific implementatio

n in cc

See the detailed description of related protocols https://mavlink.io/en/services/command.

https://mavlink.io/en/services/heartbeat.html
https://mavlink.io/en/services/heartbeat.html
https://mavlink.io/en/services/command.html

74

html

5.3.3 Parameter protocol

Parameter protocol services are used to exchange configuration Settings between MAV

Link components. Each parameter is represented as a key/value pair. The key is usually a

human-readable parameter name (up to 16 characters) and a value - which can be one of

many types.

Key/value pairs are defined according to the following principles:

1. The readable name is small but useful (it encodes the parameter name, from which

 the user can infer the purpose of the parameter).

2, can "out of the box" support the implementation of the protocol of the unknown a

utopilot.

3. GCS does not need to know in advance which parameters exist on the remote syst

em (although in fact GCS can provide a better user experience by adding parameter meta

data (e.g., maximum and minimum values, default values, etc.).

4. Adding parameters only requires changes to the system with parameters. The GCS

and MAVLink communication libraries that load parameters do not require any changes.

Can in SRC/QGroundControl FactSystem/ParameterManager. See specific implementatio

n in cc

See the detailed description of related protocols https://mavlink.io/en/services/parameter.

html

5.3.4 Command protocol

The MAVLink command protocol ensures the transmission of MAVLink commands. T

he general MAV_CMD command defines the value of a maximum of 7 parameters. These

parameters and command ids are encoded as COMMAND_INT or COMMAND_LONG for

 sending.

The protocol provides reliable delivery by expecting a match acknowledgement (COM

MAND_ACK) from a command to indicate command arrival and result. If no acknowledg

ement is received, the command must be resend automatically.

COMMAND_INT Flight stack support for specific commands, used when sending co

mmands that contain location or navigation information. This is because it allows specifyin

g a coordinate system for position and height values that might otherwise be "unspecified.

" In addition, latitude/longitude can be sent as scaled integers in the COMMAND_INT par

ameters 5 and 6 with greater precision (more precise than when sent as floating-point valu

es in COMMAND_LONG).

https://mavlink.io/en/services/command.html
https://mavlink.io/en/services/parameter.html
https://mavlink.io/en/services/parameter.html

75

COMMAND_LONG is used to send commands that MAV_CMD sends floating-point

properties in parameters 5 and 6, because if sent in COMMAND_INT, these values will b

e truncated to integers.

If the flight stack supports it, you can use non-positional commands in either messag

e or commands that specify integers in parameters 5 and 6.

The COMMAND_INT flight stack can support the command COMMAND_LONG in

either message or/or both, despite the loss of precision, rounding error, and/or undefined r

eference frame. However, they are encouraged to support only the command COMMAND_

INT in the position and the command COMMAND_LONG with floating point values in p

arameters 5 and 6 in the position. The flight stack can use COMMAND_ACK.result as ne

eded or refuse to send MAV_RESULT_COMMAND_LONG_ONLY commands with the "er

ror" message type. MAV_RESULT_COMMAND_INT_ONLY Flight stacks that support onl

y specific commands in specific message types can more generally use these result values

to indicate the correct message type for a command

See the detailed description of related protocols https://mavlink.io/en/services/command.

html

5.3.5 Manual control protocol (joystick)

The manual control protocol allows the system to be controlled using a "standard joy

stick" (or joystick-like input device that supports equivalent coaxial nominations).

This protocol implements MANUAL_CONTROL only through messages. It defines the

 system to be controlled by target, the motion of the four main axes (x, y, z, r) and two

extension axes (s, t), and two 16-bit fields to represent the state of up to 32 buttons (butt

ons, buttons2). You can disable unused axes, and you must explicitly enable the extension

axis enabled_extensions with bits 0 and 1 of this field.

The purpose of the protocol is relatively simple and abstract, and provides a simple

way to control the main movement of the vehicle, as well as several arbitrary functions t

hat can be triggered using buttons.

This enables the GCS software to provide simple control for multiple types of vehicle

s and allows new vehicle types with unusual features to operate with minimal, if any, cha

nges to the MAVLink protocol or existing ground control station (GCS) software.

You can see the implementation in src/Joystick/ joystick.cc of QGroundControl

See the detailed description of related protocols https://mavlink.io/en/services/manual_co

ntrol.html

https://mavlink.io/en/services/command.html
https://mavlink.io/en/services/command.html
https://mavlink.io/en/services/manual_control.html
https://mavlink.io/en/services/manual_control.html

76

5.3.6 Camera protocol

The camera protocol is used to configure the camera payload and request its state. It

supports photo shooting, video shooting and streaming. It also includes messages for query

ing and configuring on-board camera storage.

Built-in camera support for MAVLink camera protocol, Workswell cameras: WIRIS Pr

o, WIRIS Pro SC, WIRIS Security, WIRIS Agro, GIS-320 (source); PhaseOne camera (sou

rce).

The Camera Manager provides the MAVLink Camera Protocol interface for cameras t

hat do not directly implement MAVLink support. These usually run on companion comput

ers: MAVLink Camera Manager (Active maintenance), Drone Code Camera Manager.

The camera assembly should follow the heartbeat/connection protocol and send a cons

tant heartbeat stream (usually 1Hz). Each camera must use a different predefined camera c

omponent ID: MAV_COMP_ID_CAMERA to MAV_COMP_ID_CAMERA6. The first time

a heartbeat is detected from a new camera, the GCS (or other receiving system) should in

itiate the camera recognition process.

See the detailed description of related protocols https://mavlink.io/en/services/camera.ht

ml

5.3.7 Image transfer protocol

The image Transfer protocol uses MAVLink as a communication channel to transfer a

ny type of image (raw image, Kinect data, etc.) from one MAVLink node to another. It b

asically takes live camera images, splits them up into small pieces and sends them throug

h MAVLink.

The image flow component uses two MAVLink messages: the handshake message DA

TA_TRANSMISSION_HANDSHAKE for starting image streams and describing images to

send, and the data container message ENCAPSULATED_DATA for transporting image data.

The communication is initiated by QGroundControl and the DATA_TRANSMISSION_

HANDSHAKE request starts the flow. The message specifies (1) type: enumerates any typ

e in MAVLINK_DATA_STREAM_TYPE in mavlink.h; (2) jpg_quality: Image quality requi

red (for lossy formats such as JPEG) (3) All other fields in the initial request must be ze

ro.

When the target MAV receives a handshake request, it sends back a DATA_TRANSM

ISSION_HANDSHAKE. This behavior provides confirmation of the request and informatio

n about the image to be streamed:

 type: The type of image to stream (same as the type requested)

https://mavlink.io/en/services/camera.html
https://mavlink.io/en/services/camera.html

77

 size: Image size in bytes.

 width: Image width in pixels.

 height: indicates the height of the image in pixels.

 packetsENCAPSULATED_DATA: indicates the number of MAVLink packets to be

sent

 payload: The size of each packet (usually 252 bytes)

 jpg_quality: Image quality (same as required)

The image data is then broken into chunks to fit ENCAPSULATED_DATA messages

and sent over MAVLink. Each packet contains a serial number and the ID of the image s

tream to which it belongs.

The image stream transmitter periodically sends new images without further interactio

n. Each new image comes with a new DATA_TRANSMISSION_HANDSHAKEACK packe

t size that contains the updated image packets and payload fields. After this ACK packet,

the new image arrives as a series of ENCAPSULATED_DATA packets.

To stop the image stream, the GSC must send a new DATA_TRANSMISSION_HAN

DSHAKE request packet with all values of 0. The MAVLink node will confirm this by s

ending back DATA_TRANSMISSION_HANDSHAKE that also contains a 0 value.

See the detailed description of related protocols https://mavlink.io/en/services/image_tra

nsmission.html

5.3.8 File Transfer Protocol (FTP)

File Transfer Protocol (FTP) supports file transfer via MAVLink. It supports common

FTP operations such as reading, truncating, writing, deleting and creating files, listing and

deleting directories.

The protocol follows a client-server model, where all commands are sent by the GCS

 (client) and the drone (server) responds with an ACK containing the requested informatio

n or a NAK containing an error. GCS sets a timeout after most commands and may rese

nd the command if triggered. If a request is received with the same serial number, the dr

one must resend the response.

All messages (commands, ACK, NAK) are exchanged within the FILE_TRANSFER_P

ROTOCOL message. The message type definition is minimal and has fields for specifying

the target network, system, and component, as well as "any" variable-length payload.

The different commands and other information needed to implement the protocol are

encoded in the payload FILE_TRANSFER_PROTOCOL. This topic explains coding, packa

ging formats, commands and errors, and the order in which commands are sent to implem

ent core FTP functionality.

https://mavlink.io/en/services/image_transmission.html
https://mavlink.io/en/services/image_transmission.html

78

You can see the implementation in src/uas/FileManager.cc and FileManager.h of QGro

undControl

See the detailed description of related protocols https://mavlink.io/en/services/ftp.html

5.3.9 PING protocol

The PING protocol enables the system to measure system latency on any connection:

serial ports, radio modems, UDP, etc. The simplified timing diagram is as follows:

The PING system initially populates the PING message with the following

 time_usec: indicates the current system time stamp.

 seq: indicates the current PING sequence number (n, n+1,...). . This should PING

iteratively for each message sent and overflow back to zero.

 target_system and target_component: 0 (for the PING request).

 The message header automatically contains the sender system.

The message can be received by multiple systems. All ping ed systems should respon

d with another PING message where:

 The original timestamp and serial number PING received is sent back in the respo

nse.

 target_system and the target_component is set to the ID of the ping system from t

he incoming ping message header.

https://mavlink.io/en/services/ftp.html

79

You can see the implementation in src/uas/FileManager.cc and FileManager.h of QGro

undControl

See the detailed description of related protocols https://mavlink.io/en/services/ftp.html

5.3.10 Path Planning Protocol (Trajectory Interface)

The path planning protocol (also known as the trajectory interface) is a common prot

ocol for a system to request a dynamic path planning from another system (i.e. the autopi

lot requests a path from the companion computer).

This protocol is primarily suitable for situations where the path constraints to a destin

ation are unknown or may change dynamically, but it can also be used for any other path

 management activity. Examples include avoiding obstacles while performing a pre-planned

task, determining the path of a self-forming/repairing swarm, offloading geofencing manage

ment to a matching computer, and more.

A (autopilot) system that requires path planning sends a message containing its curren

t location and the desired trajectory. The path planning system (companion computer) anal

yzes the required route and sends back a message flow with a new path setting value. Th

e relevant process is shown in the figure.

See the detailed description of related protocols https://mavlink.io/en/services/trajectory.

html

5.3.11 Battery protocol

MAVLink provides a number of messages for providing battery information: battery st

atus information that can be periodically accessed through BATTERY_STATUS. The SMA

https://mavlink.io/en/services/ftp.html
https://mavlink.io/en/services/trajectory.html
https://mavlink.io/en/services/trajectory.html

80

RT_BATTERY_INFO command enables you to obtain some battery information, such as th

e device name.

Messages are sent individually for each battery in the system (messages have an insta

nce ID field that identifies the corresponding battery). GCS is responsible for providing ap

propriate mechanisms that allow users to evaluate the overall battery status on systems wit

h multiple batteries.

A smart battery connected to a flight controller via a non-MAVLink bus is considered

 part of the flight controller assembly. Specifically, the battery message is sent along with

the automated driving system and component ID and the MAV_TYPE vehicle type.

Smart batteries that are different components on the MAVLink network must: issue H

EARTBEAT = MAV_TYPE_BATTERY - have a unique component ID HEARTBEAT.type

within the MAVLink system. By default, the first two battery instances should use MAV_

COMP_ID_BATTERY and MAV_COMP_ID_BATTERY2. Subsequent instances can use any

 alternate/unused ID.

See the detailed description of related protocols https://mavlink.io/en/services/battery.ht

ml

5.3.12 Event Interface (WIP)

An event interface is a general and flexible mechanism that allows a component to re

liably notify the GCS (or any other component) of unexpected events and state changes. F

or example, the interface can be used to notify readiness, calibration completion, and targe

t takeoff altitude.

This interface provides common events shared by the flight stack or other components

 as well as implementation-specific events. MAVLink "common" events in MAVLink/libeve

nts/events/common definition in json.

The interface provides the following main functions:

⚫ Reliable delivery with retransmission

⚫ A consistent interface for reporting system health and defense checks.

⚫ Minimizes buffer requirements on the autopilot side.

⚫ Minimizes binary message length

⚫ General: not related to autopilot and GCS.

⚫ Long-term stability and scalability

⚫ allows parameters to be attached to events.

⚫ Possible type: uint8, int8, uint16, int16, uint32, int32, int64, uint64, float

⚫ enumerations and bit fields can be built upon these types

⚫ Enable automatic processing (e.g. from a flight log containing events).

https://mavlink.io/en/services/battery.html
https://mavlink.io/en/services/battery.html

81

⚫ Minimizes the amount of automatically generated code for embedded implementat

ions.

⚫ Average event volume <1 Hz (may change as protocol parameters are adjusted, s

uch as retransmission timeout).

⚫ Events can be targeted or broadcast

⚫ Any component can send events, including cameras, companion computers, groun

d stations, and more.

⚫ events have metadata, such as log levels. They can also have detailed, broader d

escriptions, possibly with urls.

⚫ Supports message text and message translation.

See the detailed description of related protocols https://mavlink.io/en/services/events.html

5.3. CopterSim MAVLink_Simple

By encapsulating the details of the MAVLink protocol, MAVLink_Simple makes it eas

ier for users to establish communication links, send and receive messages without having t

o delve into the underlying details of MAVLink

5.4. CopterSim MAVLink_Full

6. Control interface（original,PX4MavCtrlV4.py）

Currently, although CopterSim supports UDP_Simple control posture, the implementati

on of PX4MavCtrlV4.py does not.

6.1. UDP control interface of Simulink

6.1.1. UDP Send (UDP Send Byte Stream Module)

UDP Send is a byte stream sending module provided by Simulink, whose input is a

byte stream and output to a specific port in the network. The module has three parameter

s: network IP, network port, and cache size. After the original data is packaged, the user

can use the UDP Send module to send the data.

https://mavlink.io/en/services/events.html

82

6.1.2. Receice UDP (UDP Receive Byte Stream Module)

Simulink provides Receive UDP packets for receiving UDP data. UDP data sent by C

opterSim can be received using this module. Receive UDP packets The local host can be

selected as the host or the IP address can be specified if this parameter is not selected. Y

ou also need to specify the port and the length of the received data.

6.1.3. UDP_SIL_State_Receiver (Module for receiving sim

ulation position, speed, attitude, etc.)

UDP_SIL_State_Receiver Used for interface PX4 EKF2 estimation information. By def

ault, only position, speed, and attitude information are parsed in the platform, while the ac

tual message data format from PX4 is outHILStateData, including relative height, NED po

sition, speed, etc. Users who want to use this information need to modify the internal imp

lementation of UDP_SIL_State_Receiver to parse this information.

output parameter
GpsPos GPS location, int32_t, lat&long: deg*1e7,

alt: m*1e3

83

GpsVel GPS speed, int32 t, NED, m/s*1e2->cm/s

EulerAng Euler's Angle, float

IsDataOK Indicates whether the data is valid. The v

alue bool is 1 when valid

output parameter
data Byte stream, unit8

len Byte stream length, unit16

6.1.4. UDP_True_State_Receiver (Module for receiving in

formation such as real position, speed, and attitude)

UDP_True_State_Receiver is used to parse SOut2Simulator data. The module used to

get data from UDP is the same as that used to receive SIL data, but the port has been c

hanged from 20101 to 30101. Similarly, users can modify the internal implementation of

UDP_True_State_Receiver to reduce or increase the amount of specific data parsed.

84

6.1.5. Location control (location messages packaged into

byte streams)

Platform provides PosTargetEarthFrameOffboardCtrl position control module is used to

package information into a byte stream. The user can control the position through this mo

dule. The values of PosX, PosY, PosZ, and Yaw on the left can be modified during the r

unning of the program. For more complex control, you can replace PosX, PosY, PosZ, an

d Yaw with sinusoidal signals or custom functions.

6.1.6. Speed control (speed messages packaged into byte

streams)

The speed control usually supports NED coordinate system and body coordinate syste

m. VelEarthFrameOffboardCtrl and VelBodyFrameOffboardCtrl within the specified coordina

te system is different. Simulink speed control uses the platform's simplified UDP_Simple

85

mode, i.e. [vx, vy,vz, yaw_rate].

6.1.7. Analog remote control PWM control

The key to analog remote control is to convert the speed signal into PWM waves. T

he input to the module is still the speed, but the output is the pulse width of the PWM

wave. RCOverrideMavlink module, the final encapsulated data needs to be parsed accordin

g to inHILCMDData.

6.2. Python UDP control interface

PX4MavCtrler is the core implementation class for python control, and it is also the

core class for users to obtain and control vehicle status through python.

86

6.2.1. PX4MavCtrler:__init__()（Initialization of paramete

rs）

Function prototype: __init__(self, port=20100,ip='127.0.0.1')

Parameters: (self, port=20100,ip='127.0.0.1')

Returned value: Object of type PX4MavCtrler

PX4MavCtrler:__init__() is a type initialization function that initializes vehicle status a

nd connection parameters. You can specify two parameters, port and ip. __init__() is calle

d automatically when the object is initialized.

output para

meter

name description default

port port 20100, number

ip UDP communication ip add

ress

“127.0.0.1”,string

returned va

lue

PX4MavCtrler A PX4MavCtrler object --

6.2.2. InitMavLoop()（Initialize CopterSim to listen to M

AVlink）

Function prototype: InitMavLoop(self,UDPMode=2)

Parameter: InitMavLoop(self,UDPMode=2). Parameter Settings during object initializati

on affect the behavior of this function. UDPMode Specifies the communication mode.

Returned value: None

PX4MavCtrler: The InitMavLoop() function is used to establish the receive and send

connections, and almost every routine uses this interface. This function supports the param

eters UDPMode, 0-UDP_Full, 1-UDP_Simple, 2-MAVLink_Full, 3-MAVLink_Simple, and 4

-MAVLink_NoSend. InitMavLoop() initializes different connection objects depending on the

 mode. Then, two threads are initialized to get status information and to send control instr

uctions. The receiving thread calls getMavMsg(), which is started at InitMavLoop(). The s

ending thread calls OffboardSendMode(), which is only called when the thread is in Offbo

ard mode.

6.2.3. endMavLoop()（Stop Mavlink listening）

Function prototype: endMavLoop (self)

87

Parameter: None

Returned value: None

PX4MavCtrler: endMavLoop() is used to stop listening for Mavlunk messages and run

ning. It calls the stopRun() method to stop receiving messages from port 20100 or the ser

ial port.

6.2.4. initOffboard()（Send offboard to PX4）

Function prototype: initOffboard(self)

Parameter: None

Returned value: None

PX4MavCtrler: initOffboard() is used to switch the mode of the vehicle to Offboard

mode, and then the user can send Offboard position, speed, acceleration, yaw Angle, yaw

Angle rate and other control information. This function not only causes the vehicle to ent

er Offboard mode, but also causes the vehicle to unlock. After initOffboard() is run, Offb

oard messages are continually sent via OffboardSendMode(). initOffboard() sets the speed,

yaw Angle rate to 0 and sends.

6.2.5. initOffboard2()（Send offboard to PX4）

Function prototype: initOffboard2(self)

Parameter: None

Returned value: None

PX4MavCtrler: initOffboard2() is also used to enter the Offboard mode. Unlike initOff

board(), initOffboard2() does not reset the control information to 0. initOffboard2() is suita

ble for over-the-air switching to Offboard mode where control information is not expected

to be set to 0.

6.2.6. InitTrueDataLoop()（Example Initialize listening for

 UDP True）

Function prototype: InitTrueDataLoop(self)

Parameter: None

Returned value: None

PX4MavCtrler: InitTrueDataLoop() is to initialize the UDP True data listening loop. It

 first binds the UDP socket to the specified port (self.port+1+10000) and then sets stopFla

gTrueData to False, indicating that the listening loop is not stopped. Next, create a thread

tTrue with the object function getTrueDataMsg, and start the thread tTrue. Then bind anot

her UDP socket to another port (self.port+1+20000), and set stopFlagPX4Data to False to

88

not stop the listening loop. Create another thread tPX4 with the object function getPX4Dat

aMsg and start thread tPX4.

6.2.7. EndTrueDataLoop()（Example End UDP True liste

ning）

Function prototype: EndTrueDataLoop(self)

Parameter: None

Returned value: None

EndTrueDataLoop is the end of the True data schema. It starts by setting stopFlagTru

eData to True, which stops the listening loop for True data. Then set hasTrueDataRec to

False, indicating that no True data was received. Finally close the UDP socket udp_socket

True. Finally, stopFlagPX4Data is set to True to stop the listening loop for PX4 data. The

n wait for the tPX4 thread to finish. Finally close the UDP socket udp_socketPX4

6.2.8. Access the read status of PX4MavCtrler member

variables

The PX4MavCtrler class has the following member variables

variate annotation variate annotation

uavTimeStmp Aircraft time stamp trueTimeStmp True timestamp

uavAngEular Estimated Euler An

gle

trueAngEular The real Euler Angl

e

uavAngRate Estimated angular v

elocity

trueAngRate The true angular vel

ocity

uavPosNED Estimated local posi

tion (NED coordinat

es)

truePosNED Real position (NED

coordinate system)

uavVelNED Estimated local spee

d

trueVelNED Real speed

uavPosGPS Estimated GPS posit

ion (NED coordinat

es)

uavPosGPSHome Estimated GPS starti

ng position (NED c

oordinates)

uavGlobalPos Estimated global po

sition (converted to

trueAngQuatern A real quaternion

89

UE4 map coordinate

 system)

trueMotorRPMS Real motor speed trueAccB True acceleration

truePosGPS Real GPS location trueSimulinkData Real Simulink data

useCustGPSOri Whether to use cust

om GPS directions

trueGpsUeCenter Real GPS UE centr

al location

GpsOriOffset GPS 方向偏移量 uavThrust Estimated thrust

pos 位置 vel speed

acc 加速度 yaw Yaw Angle

yawrate 偏航角速率

6.2.9. SendVelNED()（Send maximum speed to PX4）

Function prototype: SendVelNED(self,vx=0,vy=0,vz=0,yawrate=0)

Arguments: (self,vx=0,vy=0,vz=0,yawrate=0), self indicates that the PX4MavCtrler shar

ed object affects the behavior of this function. The default value for each parameter is 0.

Returned value: None

Sends velocity control information in NED coordinates with yaw Angle rate. The fun

ction contains four input parameters, vx=0, vy=0, vz=0, yawrate=0. The default value for

each argument is 0, that is, if SendVelNED() takes no arguments, the function will send t

he expected speed 0 and the expected yaw Angle rate 0.

6.2.10. SendVelNEDNoYaw()（Maximum transmission sp

eed without yaw）

Function prototype: SendVelNEDNoYaw(self,vx,vy,vz)

Arguments: (self,vx,vy,vz), self indicates that the PX4MavCtrler shared object affects t

he behavior of this function. Parameters have no default value, vx,vy,vz must be specified.

Returned value: None

Sends velocity control information in NED coordinate system without yaw Angle rate.

 This function takes three parameters, vx,vy,vz. There are no default values for these three

 parameters. It is worth noting that no yaw rate and a yaw rate of 0 are two different th

ings/

90

6.2.11. SendVelFRD()（Maximum sending speed under

FRD framework）

Function prototype: SendVelFRD(self,vx=0,vy=0,vz=0,yawrate=0).

Arguments: (self,vx=0,vy=0,vz=0,yawrate=0), self indicates that the PX4MavCtrler shar

ed object affects the behavior of this function. The default value for each parameter is 0.

Returned value: None

This function is the expected velocity in the specified carrier coordinate system, in m

/s. In the absence of any parameters it will send the expected velocity 0 and the expected

 yaw Angle rate 0.

6.2.12. SendVelNoYaw()（Send maximum speed under F

RD frame without rolling down）

Function prototype: SendVelNoYaw(self,vx,vy,vz)

Arguments: (self,vx,vy,vz), self indicates that the PX4MavCtrler shared object affects t

he behavior of this function. Parameters have no default value, vx,vy,vz must be specified.

Returned value: None

Send the velocity control information in the FRD carrier coordinate system without ya

w Angle rate. This function takes three parameters, vx,vy,vz. There are no default values

for these three parameters. It is worth noting that no yaw rate and a yaw rate of 0 are t

wo different things.

6.2.13. SendPosNED()（Send coordinates to PX4）

Function prototype: SendPosNED (self,x=0,y=0,z=0,yaw=0)

Parameters: x, y and z represent the position in the NED coordinate system respectiv

ely, yaw represents the yaw Angle, and the default value is 0.

Returned value: None

Send position and yaw Angle in NED coordinates.

6.2.14. SendVelYawAlt()（Send gesture to PX4）

Function prototype: SendVelYawAlt(self,vel=10,yaw=6.28,alt=-100)

Parameters: vel represents the horizontal speed, yaw represents the yaw Angle, and alt

 represents the altitude.

Returned value: None

91

Send the altitude, yaw Angle and horizontal speed in the NED coordinate system.

6.2.15. SendPosGlobal()（Send target location to PX4）

Function prototype: SendPosGlobal(self,lat=0,lon=0,alt=0,yawValue=0,yawType=0)

Parameters: lat&lon indicates latitude and longitude, unit °; alt indicates height, down

ward is positive, unit m. The meaning of yawValue is determined by yawType. yawType

0, yaw is not specified. yawType 1, yaw Angle control; yawType 2, yaw Angle rate.

Returned value: None

To send the global position, the input latitude and longitude of the function are meas

ured in °, and the height is measured in m. However, data is automatically converted to

MAV_FRAME_GLOBAL_INT when it is sent.

6.2.16. SendPosNEDNoYaw()（Send target position with

out yaw control）

Function prototype: SendPosNEDNoYaw (self,x=0,y=0,z=0)

Parameters: x, y and z represent the position in the NED coordinate system, respectiv

ely.

Returned value: None

Control position in NED coordinate system without specifying yaw Angle.

6.2.17. SendPosFRD()（Send the location under FRD to

 PX4）

The original intention of this function is to control the position in the FRD carrier co

ordinate system, but PX4 does not support this format, so the function does not work as

expected.

6.2.18. SendPosFRDNoYaw()（Send position under FRD

 without yaw control to PX4）

The original intention of this function is to control the position in the FRD carrier co

ordinate system, but PX4 does not support this format, so the function does not work as

expected.

6.2.19. SendPosNEDExt()（Send target position to fixed

 wing）

Function prototype: SendPosNEDExt(self,x=0,y=0,z=0,mode=3,isNED=True)

92

Parameters: x, y, z indicate position, mode is used to control the flight mode of the

fixed wing. mode 0: coasting mode. mode 1, take-off mode; mode 2, landing mode; mode

 3, hover mode; mode 4, zero throttle, roll and pitch.

Returned value: None

This function is for fixed wing only and supports multiple modes.

6.2.20. sendPX4UorbRflyCtrl()（Send data to CopterSim）

The function prototype: sendPX4UorbRflyCtrl (self, data =,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

[0], modes = 1, flags = 1)

Parameter: data is a 16-dimensional control quantity, the default is all 0; modes are

modes and flags are flags.

Returned value: None

This function implements sending inHILCMDData data to CopterSim.

6.2.21. SendAccPX4()（Send acceleration information to

 PX4）

Function prototype: SendAccPX4(self,afx=0,afy=0,afz=0,yawValue=0,yawType=0,frameTy

pe=0)

Parameters: afx, afy, afz represent acceleration, yawValue represents yaw Angle or an

gular velocity.

yawType 0: no yaw; yawType 1: yaw Angle control; yawType 2: yaw Angle rate con

trol.

frameType 0: NED coordinate system; frameType 1: FRD carrier coordinate system.

Returned value: None

This function is used for acceleration control and the interface can be supported in U

DP_Full and MAVLINK modes. CopterSim already supports acceleration control in UDP_S

imple mode, but the current python interface of PX4MavCtrlV4.py does not support it.

6.2.22. endOffboard()（Send out offboard mode to PX4）

Function prototype: endOffboard(self)

Parameter: None

Returned value: None

Set isInOffboard to False and restore the corresponding flag for PX4 to the state it w

as before entering Offboard.

93

6.2.23. stopRun()（Stop listening for mavlink messages）

Function prototype: stopRun(self)

Parameter: None

Returned value: None

stopRun is used to stop the mavlink listening loop. It first checks if it is unlocked (i

sArmed), and if it is, sends an unlock command to the flight controller. Then set stopFlag

 to True to stop the listening loop. Then wait 0.5 seconds for the t1 thread to finish. If

you are currently in Offboard mode, the endOffboard method is called to endOffboard mo

de. If UDPMode is greater than 1.5, the connection to flight control is closed. Otherwise,

close the UDP socket if it is not a serial port connection

6.3. Simulink's MAVLink control interface (serial connection)

6.3.1. mavlink_msg_sender

The following interface is provided in Simulink for packaging data into MAVLink for

mat. mavlink_msg_sender is an S function that provides the default interface for sending c

ontrol messages. If the user is just sending regular control instructions, the data can be pa

ckaged directly using the module. If there are some special needs, you can modify the in

put and output data format according to the Simulink S function writing method. 【7.Rfly

SimExtCtrl\1.BasicExps\e0_ExtAPIUsage】

input parameter

timeStamp Time stamp, unit32

mode Mode, unit8

flags Flag, uint32

controls 16-bit control signal single

output parameter
data Byte stream, unit8

len Byte stream length, unit16

94

6.3.2. mavlink_msg_receiver

mavlink_msg_receiver is the reverse procedure of mavlink_msg_sender for parsing byt

e stream data. The data format of the mavlink_msg_receiver must strictly correspond to th

at of the mavlink_msg_sender. 【7.RflySimExtCtrl\1.BasicExps\e0_ExtAPIUsage】

output parameter

timeStamp Time stamp, unit32

mode Mode, unit8

flags Flag, uint32

controls 16-bit control signal single

input parameter
data Byte stream, unit8

len Byte stream length, unit16

6.3.3. MavLink Serial Input&Output

95

6.4. Python's MAVLink control interface (based on pymavlink)

6.4.1. SendMavArm () (issue a disarmament order to PX

4)

Function prototype: SendMavArm(self, isArm=0)

Parameter: isArm indicates whether the drone is interpreted, 1 indicates unlocking, 2 i

ndicates locking

Returned value: None.

SendMavArm sends a command to PX4 to unlock or lock the drone.

6.4.2. SendMavCmdLong() (Sending the command length

to PX4)

Function prototype: SendMavCmdLong(self, command, param1=0, param2=0, param3=0, par

am4=0, param5=0, param6=0, param7=0)

Parameter: command indicates the command to be sent.

param1: Hold time (fixed wing ignore, rotor stop time)

param2: Acceptance radius (if in the sphere of this radius, the route is reached)

param3: Through radius 0 indicates that WP is passed. If the radius is greater than 0, WP

 is passed. Positive clockwise orbits and negative counterclockwise orbits allow trajectory

control.

96

Param4: yaw Angle (rotor) required for yaw waypoint. Use the current system yaw headin

g mode (for example, yaw to next waypoint, yaw home, etc.).

Param5: Latitude

Param6: Longitude

Param7: Height (in meters)

Returned value: None.

SendMavCmdLong is a command length message that sends Mavlink to PX4. And ac

cording to the current connection mode and flight mode, select different sending methods.

If it is a serial port connection or in real flight mode, the function sends the command u

sing the mav.mand_long_send method of the the_connection object. For UDP connection m

ode, the function generates the command using the command_long_encode method of the

mav0 object.

6.4.3. sendMavOffboardCmd() (send an off-board comma

nd to PX4)

 Function prototype: sendMavOffboardCmd(self,type_mask,coordinate_frame, x, y, z, v

x, vy, vz, afx, afy, afz, yaw, yaw_rate)

Parameters: type_mask Indicates the bitmask of the control mode. coordinate_frame re

presents the type of coordinate system;

x, y, z represent the coordinates of the target location; vx, vy, vz represent the comp

onents of the target velocity; afx, afy, afz represent the components of the target accelerati

on; yaw represents the target course Angle; yaw_rate represents the angular rate of the tar

get course;

Returned value: None.

sendMavOffboardCmd sends the Offboard command to PX4.

6.4.4. initRCSendLoop() (Initializing remote control)

Function prototype: initRCSendLoop(self, Hz=30)

Parameter: Hz Indicates the frequency of remote transmission. The default value is 30

Hz.

97

Returned value: None.

initRCSendLoop initializes the remote control and sends a loop

6.4.5. SendRCPwms() (Update PWM value of remote co

ntrol)

Function prototype: SendRCPwms(self, Pwms)

Parameter: Pwms is a list of PWM values

Returned value: None.

SendRCPwms sends a list of the given PWM values to the remote control.

6.4.6. endRCSendLoop() (Stopping the remote transmissi

on loop)

Function prototype: endRCSendLoop(self)

Parameter: None

Returned value: None.

endRCSendLoop Ends the remote control sending loop.

6.4.7. SendSetMode() (Send the mavlink command to swi

tch the flight mode)

Function prototype: SendSetMode(self,mainmode,cusmode=0)

Parameter: mainmode indicates the main flight mode; cusmode Specifies the user-defin

ed mode. This parameter is optional. The default value is 0.

Returned value: None.

SendSetMode is the MAVLink command sent to PX4 to change the flight mode.

6.4.8. SendAttPX4() (sends speed control signal to PX4)

Function prototype: SendAttPX4(self,att=[0,0,0],thrust=0.5,CtrlFlag=0,AltFlg=0)

Parameter: att indicates attitude and thrust indicates accelerator.

CtrlFlag 0, Euler Angle, unit degree;

CtrlFlag 1, Euler Angle, unit rad;

CtrlFlag 2, Euler Angle, quaternion;

CtrlFlag 3, Euler Angle, angular rate rad/s;

CtrlFlag 4, Euler Angle, angular rate °/s.

AltFlg 0, throttle values zoom to 0~1.

AltFlg>0, the throttle value is the desired height.

98

Returned value: None

This function is used to control the attitude of the vehicle, and the interface is only

supported in MAVLink mode. CopterSim can perform hardware-in-the-loop emulation in U

DP mode, in which case Python scripts can bypass CopterSim and send MAVLink messag

es directly to PX4. CopterSim already supports control attitude in UDP_Simple mode, but

the current python interface of PX4MavCtrlV4.py does not support it.

6.4.9. enFixedWRWTO () (order the aircraft to take off

from the runway)

Function prototype: enFixedWRWTO(self)

Parameter: None

Returned value: None.

enFixedWRWTO is to send the command to enable the aircraft to take off on the ru

nway.

6.4.10. SendCruiseSpeed()（Send the command to chang

e the cruising speed of the aircraft）

Function prototype: SendCruiseSpeed(self,Speed=0)

Parameter: Speed Indicates the cruising speed. The default is 0.

Returned value: None.

SendCruiseSpeed is the command sent to change the cruising speed of the aircraft (m

/s).

6.4.11. SendCopterSpeed()（Set the maximum multi-roto

r speed）

Function prototype: SendCopterSpeed(self,Speed=0)

Parameter: Speed Indicates the maximum speed. The default value is 0.

Returned value: None.

SendCopterSpeed is the command sent to set the maximum speed of a multi-rotor ve

hicle.

6.4.12. SendGroundSpeed()（Set the ground speed of th

e aircraft）

Function prototype: SendGroundSpeed(self,Speed=0)

99

Parameter: Speed Indicates the ground speed. The default value is 0

Returned value: None.

SendGroundSpeed is the command sent to change the ground speed of the aircraft (m

/s).

6.4.13. SendCruiseRadius()（Set the cruising radius of t

he aircraft）

Function prototype: SendCruiseRadius(self,rad=0)

Parameter: rad indicates the cruising radius. The default is 0.

Returned value: None.

SendCruiseRadius is the command sent to change the cruising radius of the aircraft (i

n meters).

6.4.14. sendTakeoffMode()（Take-off order）

Function prototype: sendTakeoffMode(self,alt=0)

Parameter: alt indicates the takeoff height. The default value is 0.

Returned value: None.

sendTakeoffMode sends the command to make the plane take off.

6.4.15. sendMavTakeOff()（Order the plane to take off

to the desired position）

Function takeoff: sendMavTakeOff(self,xM=0,yM=0,zM=0,YawRad=0,PitchRad=0)

Parameters: xM, yM, zM represent the local coordinates of the target location; YawRa

d represents the target course Angle (radian);

PitchRad represents the pitch Angle of the target (radian);

Returned value: None.

sendMavTakeOff Sends the command to make the aircraft take off to the specified lo

cal position (in meters).

6.4.16. sendMavTakeOffLocal()（Order the aircraft to f

ly to the desired local location）

Function prototype: sendMavTakeOffLocal(self,xM=0,yM=0,zM=0,YawRad=0,PitchRad=0,

AscendRate=2)

Parameters: xM, yM, zM represent the local coordinates of the target location; YawRa

100

d represents the target course Angle (radian);

PitchRad represents the pitch Angle of the target (radian); AscendRate: Rate of ascent

 (unit: m/s)

Returned value: None.

sendMavTakeOffLocal sends the command to take off to the specified local position

(in meters) with an additional parameter passed in to the sendMavTakeOff function

6.4.17. sendMavTakeOffGPS()（Order the aircraft to fly

 to the desired global location）

Function prototype: sendMavTakeOffGPS(self,lat,lon,alt,yawDeg=0,pitchDeg=15)

Parameters: lat, lon, alt represent the global coordinates of the target location; yawDe

g represents the target course Angle (degree);

pitchDeg represents target pitch Angle (degree);

Returned value: None.

sendMavTakeOffGPS sends a command to take off an aircraft to a specified global lo

cation (in degrees)

6.4.18. sendMavLand()（Land in position）

Function prototype: sendMavLand(self,xM,yM,zM)

Parameters: xM, yM, zM indicates the local coordinates of the target location

Returned value: None.

sendMavLand sends the command to land the aircraft at the specified local location (i

n meters).

6.4.19. sendMavLandGPS()（Land at the designated glo

bal location）

Function prototype: sendMavLandGPS(self,lat,lon,alt)

Parameters: lat, lon, alt represent the global coordinates of the target location.

Returned value: None.

sendMavLandGPS sends the command to land the aircraft to the specified global posi

tion (in degrees).

101

6.4.20. sendMavSetParam()（Send a command to PX4 t

o change the expected parameters）

Function prototype: sendMavSetParam(self,param_id, param_value, param_type)

Parameter: param_id Specifies the ID of the parameter to be changed. param_value S

pecifies the parameter value to be set.

param_type Specifies the type of the parameter.

Returned value: None.

sendMavSetParam sends the command to PX4 to change the ID, size, and type of th

e specified parameter values.

6.4.21. SendHILCtrlMsg() (PX4 send to ComSim)

Function prototype: SendHILCtrlMsg(self,ctrls)

Parameter: ctrls is a list of control signals to be sent.

Returned value: None.

SendHILCtrlMsg sends the hil_actuator_controls command to PX4 to control the attitu

de and motion of the aircraft. For a serial connection or in real flight mode, the function

sends the command using the mav.hil_actuator_controls_send method of the the_connection

object. In UDP connection mode, the function sends the command using the hil_actuator_c

ontrols_encode method of the mav0 object.

6.4.22. SendHILCtrlMsg1()（Send debugging instruction）

Function prototype: SendHILCtrlMsg1(self)

Parameter: None

Returned value: None.

SendHILCtrlMsg1 is used to send the debug_vect command to PX4 to send debuggin

g vector information. If it is a serial port connection or in real flight mode, the function

will send the command using the mav.debug_vect_send method of the the_connection obje

ct. For UDP connection mode, the function sends the command using the debug_vect_enco

de method of the mav0 object.

6.5. Ros-based MAVLink control interface (based on mavros, co

py the visual group)

102

7. rflysim Standard Library Edition control interface (n

ew version, support Redis)

7.1. ctrl

The ctrl module is an external control module that can obtain the

 position, speed and attitude information of the UAV through UDP_Ful

l, UDP_Simple, MAVLINK_Full, MAVLINK_Simple, Redis_Full, Redis_Simple

 and other modes. The position, speed and heading of the UAV are cont

rolled.

7.1.1. Code structure

The ctrl module code is placed in the Python38/Lib/site-packages/

rflysim/ctrl directory. It contains __init__.py, api.py, offboard.py,

 and principal.py. __init__py and api.py mainly provide user interfac

es, which are described in detail in the next section, "User apis."

7.1.2. offboard.py

offboard.py is the core source code of external control, which su

pports the acquisition of UAV position, speed and attitude informatio

n through UDP_Full, UDP_Simple, MAVLINK_Full, MAVLINK_Simple, Redis_F

ull, Redis_Simple and other modes. The position, speed and heading of

 the UAV are controlled. offboard.py is aimed at advanced developer u

sers and supports many features, but the interface is relatively comp

lex to invoke.

offboard.py type table

type function

SimMode Simulation mode, including HITL, SITL, SIT

L_RFLY, Simulink_DLL and other modes.

CtMode It refers to the connection mode, includin

g UDP/MAVLINK/Redis and other major modes. Acc

ording to the size of data packets, they are d

103

ivided into Simple mode and Full mode. To furt

her reduce data overhead, there are two modes,

 MAVLink_NoSend and MAVLink_NoGPS.

Coordinate Currently, only three coordinate systems are supported f

or sending control information, LOCAL_NED, GLOBAL_IN

T, and NED_BODY. The corresponding encoding is referred

to the MAVLINK protocol.

PX4MainMode Main modes supported by PX4, manual, fixed height, fi

xed point, etc.

PX4SubMode PX4 supports sub-modes, take-off, mission, landing, foll

ow, etc.

RedisKey In Redis mode, aircraft are distinguished by key values.

PX4CmdLong PX4 Long command, containing 7 data.

FIFO It is used to read and write MAVLINK data.

RflySimCP Integrated model control protocol.

OffboardSimpleM

ode

Simplified control protocol, in which one int type data

identifies the pattern, and the remaining 4 float type data ar

e actual data. Since float and int are both 4 bytes, float dat

a can also be replaced with int data.

OffboardPosType Indicate what information is in the Offboard message, f

ully compatible with the PX4 Offboard position message, w

hich includes position, speed, acceleration, throttle, yaw Ang

le, yaw Angle rate, etc.

OffboardPosSend Used to build data packets for sending.

VehicleStatus It is used to represent the status of the aircraft, includi

ng ID, position, speed, attitude and other information.

EarthFrame It provides the conversion between the geographic coor

dinate system (lla), the Earth-centered solid system (ecef), a

nd the site-centered coordinate system (NED, ENU).

104

PID PID controller, single channel.

Offboard The most core class, described in detail below

The Offboard class is the core class of Ctrl and even the entire

RflySim. Functionally speaking, it is mainly divided into two types o

f functions, receiving data and sending data. When encoding, function

s that receive data start with receive, while functions that send dat

a start with send.

As shown in the following figure, are the functions associated wi

th receiving messages. The entry function for receiving the message i

s receive_msg_loop(), which is a large while loop that is started by

a separate thread when the Offboard class is initialized. receive_msg

_loop() is used to call different receiving functions and data parsin

g functions depending on the connection mode. Because redis mode and

UDP mode are very similar, a lot of code is similar, redis and udp ar

e encapsulated together. In a nutshell, receive_msg_loop() will call

receive_udp_redis_msg() when the mode is UDP/Redis, or receive_mav_ms

g() otherwise. The data will then be parsed by calling the respective

 update functions, and the parsed data will be placed in vehicle_stat

us. So an advanced developer user who wants to access the drone's sta

tus information would simply read the self.vehicle_status.

receive_udp_redis_msg() also makes a further distinction between

Simple and Full mode for the control instructions in UDP/Redis mode.

Although there are differences between Simple and Full modes in MAVLI

NK, the Simple and Full modes in MAVLINK are not reflected in the con

trol instructions, so there is no need to distinguish between Simple

and Full for external control. It is worth noting that when using the

 MAVLINK mode, the actual communication mode is UDP if the software i

s in the loop. However, unlike the UDP mode, the MAVLINK mode encodes

105

 the packets. In UDP mode, the MAVLINK encoding process takes place i

n CopterSim.

It should be added that when Simulink_DLL mode is used for simula

tion, the data is sent through the 30100 series port, and the data fo

rmat is different from that of UDP/Redis in other modes. Therefore, t

he Simulink_DLL schema is handled separately in receive_full_udp_redi

s_msg().

As shown in the following figure, it is the interface that sends

the message. Similarly, the entry function to send the message is sen

d_msg_loop(), which is also a large while loop that is started by a s

eparate thread when the Offboard class is initialized. Since Simulink

_DLL mode instructions are placed in inSIL, which is different from

(HITL, SITL), send_msg_loop() determines the Simulink_DLL mode separa

tely and calls send_simulink_dll(). Sending messages also distinguish

es between MAVLINK/UDP_Redis by calling send_position_target_mav() an

d send_position_target_udp_redis() in send_msg(). In both UDP and Red

is modes, CopterSim automatically unlocks and enters Offboard mode wh

en it receives Offboard location information. With the exception of s

end_cmd_udp(), the other send functions support only MAVLINK mode.

106

As mentioned above, a separate thread is used to receive and send

 messages. That is, there are 3 threads to control an aircraft, namel

y the main thread, the sending thread, and the receiving thread. When

 there are n planes, the total number of threads is 3n. Initialized b

y init_connection_loop() in offboard.py, this function supports mode

as a parameter, which means that the initialization of the process th

at sends and receives messages will vary depending on the connection

mode UDP/MAVLINK/Redis(Full\Simple). For non-SIMULINK_DLL mode, the 2

0100 series port is used for communication. As shown in the figure be

low, for CopterSim, port 20100 is used to receive messages and port 2

0101 is used to send messages. When the number of aircraft is increas

ed, the port value is gradually increased, such as adding a second ai

rcraft, its port is 20102, 20103. For Simulink_DLL mode, CopterSim us

es port 30100 to receive information and port 30101 to send informati

on. Similarly, when there are multiple aircraft, the ports also incre

ase from 30100. For Redis mode, the communication is carried out in t

he pub/sub mode, and there is a topic for each aircraft's sending and

 receiving. In the same way that UDP communication is numbered, the o

riginal port is used as the key, that is, the name of the topic, for

Redis communication.

107

Python

UDP收

CopterSim

UDP收

UDP发

UDP发

20101

20100

MAVLINK收发 MAVLINK收发（SITL）20101

MAVLINK收发 串口 飞控（HITL）

Simulink_ DLL收

30100

Simulink_ DLL发

Simulink_ DLL发 Simulink_ DLL收

30101

Redis收发 Redis收发以20100系列数字为key

Redis收发TrueData Redis收发TrueData以30100系列数字为key

7.1.3. topics.py

topics.py encapsulates the MAVLINK message package with only the

necessary pose and location information, as shown in the following ta

ble.

MAVLINK message encapsulated by pythonSDK

Message name description

HeartBeat Heartbeat packets, including the main mode, submode, and sy

stem status.

Attitude Attitude, including time, roll, pitch, yaw and the correspondin

g angular rate.

AttitudeTarget Desired attitude, including time, desired roll, pitch and corresp

onding angular rate

LocalPositionNED Position, position and velocity in NED coordinates.

PositionTargetLoca

lNED

Desired position, desired position and velocity in the NED co

ordinate system.

108

HomePosition home point location, latitude, longitude, height, etc.

GlobalPositionInt The global position, latitude and longitude are represented as

INT type, that is, the original basis is multiplied by 107 to c

onvert to INT, which can avoid the loss of significant digits

of floating point numbers.

7.2. User Api

7.2.1. ctrl

__init__.py is used to describe externally accessible classes in

the ctrl module. Including offboard.py "EarthFrame" geodetic Coordina

te system conversion class, "PID" controller class, "Ctrl" external c

ontrol interface class, "CtMode" connection mode class, "SimMode" sim

ulation mode class, "coordinate" coordinate class.

The Ctrl class is a wrapper around the Offboard class, providing

a more user-friendly user interface. In implementation, Ctrl is a sub

class of Offboard. The arguments of the Ctrl class are passed to its

parent class Offboard through a super call. The following table shows

 how to build a Ctrl instance, using the default parameters of the in

terface by default. When a user sets a custom port, be careful of por

t conflicts.

Interface for creating an external control instance

Ctrl(port=20100,

ip='127.0.0.1',

 redis_host='12

7.0.0.1', redis_port=637

9,

redis_pass=None,

 connect_to_h

w=False,

The Ctrl constructor is used to create an e

xternal control instance and contains 7 paramet

ers

port - Base port, generally use the default

 value. If you change the port value here, on t

he one hand, ensure that CopterSim is changed s

imultaneously and on the other hand, avoid conf

lict with other ports.

ip¬ - ip when communicating in UDP mode

redis_host -- the ip address of the server

side when communicating with Redis.

redis_port: specifies the port number of Re

109

 sim_mode=

SimMode.SITL_RFLY)

dis. If the Redis mode is used and the default

port number of Redis is changed, set this param

eter.

redis_pass -- password of Redis

connect_to_hw - Indicates whether the hardw

are is connected. This is True when the hardwar

e is in the loop and flying.

sim_mode - includes HITL, SITL, SITL_RFLY,

Simulink_DLL and other modes.

Example:

1) Use default parameters for all parameter

s

ctrl = rflysim.Ctrl()

2) Multi-machine integrated model simulatio

n

ctrl = rflysim.Ctrl(port=20100 + i * 2, sim

_mode=SimMode.Simulink_DLL)

Initializes the data input/output interface init_loop(). This fun

ction must be called during normal use, and the specification of para

meters is often required. For example, developers will choose UDP_Sim

ple or Redis_Simple when doing cluster simulation, and MAVLINK_FULL m

ode when doing fault injection.

The interface initializes the sending and receiving data thread.

Procedure

init_loop(

ct_mode=CtMode.MAVLink_F

ull, offboard=False)

Used to initialize the data transceive

r interface, start the corresponding threa

d, call the Ctrl class control aircraft al

ways need to call the interface.

Parameters:

ct_mode -- Indicates the connection mo

de

offboard - Whether the offboard contro

l is performed

Example:

ctrl.init_loop(self.ct_mode, offboard=

True)

Take-off, return, and landing command interfaces that support onl

110

y integrated models. For the take-off, return and landing of the comp

rehensive model, only the following functions can be called, and the

following functions all support specifying the height in the NED coor

dinate system.

Take-off, return, landing command interface

takeoff(height=0) Calling this function allows the synt

hesis model to take off and supports spec

ifying the height, which is the NED coord

inate. The rotorcraft will hover after ta

keoff, and the fixed-wing aircraft will c

ontinue to fly forward at roughly the sam

e altitude after takeoff.

return_home(height=0) Calling this function can control the

 return of the integrated model, that is,

 the horizontal position returns to the h

ome point, and supports setting the retur

n height (NED). When the rotor reaches th

e corresponding point, it will hover, and

 the fixed wing will hover.

land(height=0) Calling this function can control the

 integrated model landing and support set

ting the landing height (NED). Fixed-wing

 landing generally has a runway in the re

al scene, and the ground support force is

 also a complex process, at present, it c

an only land to the corresponding height,

 because the ground information is unknow

n, there may be a situation of drilling i

nto the ground.

111

Desired location send interface. Send position in NED coordinate

system and global coordinate system. When the user is programming, th

e pos passed in by calling send_pos_global() is floating-point, and t

he daemon multiplies the value by 107 and converts it to an integer a

nd sends it to CopterSim or directly through the serial port.

Location sending interface

send_pos_ned(pos, yaw) Send the desired position and yaw Angle in th

e NED coordinate system

send_pos_global(pos, yaw) Send the position in the Global coordinate syste

m. The interface supports floating point number

Settings, but automatically converts to INT when

sending

Expected speed sending interface. The expected speed and yaw Angl

e rate can be set in NED coordinate system and carrier coordinate sys

tem.

send_vel_ned(vel, yaw_rate) Send the desired velocity and yaw Angle rate in

NED coordinates

send_vel_body(vel,yaw_rate) Expected velocity and yaw Angle rate in the sen

ding carrier coordinate system

Attitude sending interface. The interface currently only supports

 fixed-wing integrated models.

send_att(att, thrust) Send Euler Angle and throttle

Get status information on the drone. The interface to obtain UAV

status information starts with get, mainly to obtain information such

112

 as position and attitude. After initializing the messaging interfac

e, the following status is updated. It is worth noting that when comm

unicating in Simple mode, the position in the Global coordinate syste

m is not available.

Get drone status information interface

get_pos_ned() Gets the position in the NED coordinate syst

em

get_pos_global() Gets the position in the Global coordinate sy

stem

get_home_pos() Get the home point location, Global coordin

ates

get_vel_ned() Get the NED coordinate velocity

get_euler() Obtain the Euler Angle

get_vehicle_id() Get vehicle ID

get_time_s() Get simulation time or flight control run tim

e

The SimMode class. Users can directly access members of the SimMo

de class to control the emulation mode. The specific simulation mode

is shown in the following table. Users need to set the correct simula

tion mode during simulation.

Interface of the SimMode class

HITL hardware-in-loop

SITL Software in loop

SITL_RFLY The software in the ring is optimized for port Settings

and supports the operation of more than 100 aircraft

Simulink_DLL Comprehensive model simulation

Example:

rflysim.Ctrl(port=20100 + i * 2, sim_mode=

113

SimMode.Simulink_DLL)

The CtMode class. Users can access members of the CtMode class di

rectly to configure the mode of the connection. The supported modes i

nclude UDP_Full, UDP_Simple, MAVLink_Full, MAVLink_Simple, Redis_Ful

l, and Redis_Simple. MAVLink_NoSend and MAVLink_NoGPS are not fully s

upported.

If the user performs a stand-alone experiment and needs to obtain

 low-level data, the MAVLINK_Full mode is recommended. For cluster ex

periments, you can select UDP_Simple/Redis_Simple. Redis supports onl

y the enterprise customized version. Redis is more stable, reliable,

and efficient than UDP. Users who are familiar with the basic routine

s of the platform can generally choose UDP_Full. Example: The followi

ng self.ct_mode can be any mode in a table. self.ctrl.init_loop(CtMod

e.UDP_Full, offboard=True)

CtMode interface

UDP_Full UDP mode, complete control instructions

UDP_Simple UDP mode, simplified control instructions

MAVLink_Full MAVLink mode: complete MAVlink protocol

MAVLink_Simple The MAVLink mode simplifies the MAVlink protocol

MAVLink_NoSend CopterSim does not forward all MAVLINK messages

MAVLink_NoGPS CopterSim does not forward GPS messages

Redis_Full Redis mode: sends and receives data through Redis,

which has the same data format as UDP_Full

Redis_Simple Redis mode: sends and receives data through Redis, a

nd has the same data format as UDP_Simple

Coordinate class. Supports local NED, Global position, velocity a

nd acceleration in carrier coordinate system, and the specific protoc

ol is consistent with MAVLINK.

Coordinate class interface

114

LOCAL_NED Coordinate class interface NED coordinate system

GLOBAL_INT Longitude and latitude multiplied by 107
 is convert

ed to INT transmission

NED_BODY Position in NED coordinates, velocity and accelerat

ion in BODY coordinates

The EarthFrame class. EarthFrame provides the conversion between

the geographic coordinate system, the geostationary system, and the s

tationocentric coordinate system. The geographical coordinate system

(Latitude, Longitude, Altitude, lla), also known as the global coordi

nate system: latitude and longitude, latitude and longitude unit is

 °, height unit is m. Earth-centered, Earth-fixed (ecef) : The origi

n (0,0,0) is the center of the Earth's mass, the Z-axis points parall

el to the Earth's axis to the North Pole, the X-axis points to the in

tersection of the prime meridian and the equator, and the Y-axis is p

erpendicular to the xOz plane (i.e. the intersection of the equator a

t 90 degrees east longitude) to form a right-handed coordinate syste

m. Station centered coordinate system: the coordinate system with the

 station as the origin. There are generally two types: East, North, U

p, ENU and North, East, Down, NED. PX4 uses the NED coordinate syste

m, and the starting point of the UAV is generally the station, that i

s, the origin. EarthFrame can realize the conversion between the abov

e three coordinate systems. When converting with the station center c

oordinate system, it is necessary to know the global position of the

station center, that is, the latitude and longitude height.

EarthFrame interface

lla2ecef(pos_global) The latitude is converted to x, y, and

z with the Earth's center of mass as the or

igin

enu2ecef(pos_global, pos_global_home) The northeast sky coordinates are conv

erted to x, y, and z with the Earth's center

115

 of mass as the origin

ecef2enu(pos_global, pos_global_home) x, y, and z with the Earth's center of

mass as the origin are converted to the no

rtheast day

lla2enu(pos_global, pos_global_home) Latitude and longitude are converted t

o northeast sky coordinates

lla2ned(pos_global, pos_global_home) Latitude and longitude are converted t

o northeastward coordinates

ecef2lla(pos_global) x, y, convert to longitude and latitude

with the Earth's center of mass as the orig

in

enu2lla(pos_enu, pos_global_home) The northeast day is convert to longit

ude and latitude

ned2lla(pos_ned, pos_global_home) Northeastward convert to longitude and

 latitude

PID class. The PID class provides a simple controller that can be

 used to calculate the desired speed from the desired position when O

ffboard control is done.

PID(p=0.0, i=0.0, d=0.0) PID constructor, which can specify PI

D parameters. By default, all parameters ar

e 0

pid(err) The input parameter is the status error

 and the output PID result

reset() Replacement integral

OffboardSimpleMode class. This class is unique to the RflySim pla

tform, and the entire control command takes only 20 bytes of space. T

his mode is only applicable to advanced developer users, and users wh

o do upper-level control do not need to pay attention to this class.

OffboardSimpleMode class interface

Vel_Yaw_Rate_NED Velocity mode in navigation coordinate system [vx,vy,v

z, yaw_rate]

Vel_Yaw_Rate_BODY Velocity mode in body coordinate system [vx,vy,vz, ya

w_rate]

Pos_Yaw_NED Position mode in navigation coordinate system [x,y,z,

116

yaw]

Pos_Yaw_BODY Position mode in body coordinate system [x,y,z, yaw]

Att_Throttle Attitude throttle control command [roll, pitch, yaw (rad

ian), throttle (0~1)]- can be automatically unlocked, can aut

omatically enter OffBoard mode

Att_Throttle_Add Attitude throttle increment control command [roll, pitc

h, yaw, throttle increment]- can be automatically unlocked,

can automatically enter OffBoard mode

Acc Acceleration control mode [ax,ay,az,--]

Acc_Yaw Acceleration control mode [ax,ay,az,yaw]

Acc_Yaw_Rate Acceleration control mode [ax,ay,az,yaw_rate]

Arm Unlock the mode shown [Unlock,-,-,-]

Speed_Radius_FW Set the speed and hover radius of the fixed wing aircr

aft, [speed, radius, -, -]

Takeoff_NED Indicates Mavlink take-off command, automatic unlock,

 navigation coordinate system position [x, y, z, -]

Takeoff_Global Indicates Mavlink take-off command, automatic unlock,

 GPS coordinate system position [latitude, longitude, altitud

e, -]

Speed_Height_Dir_Gl

obal

Speed altitude heading command, automatically unlock

and enter offBoard mode, GPS coordinate position [speed,

altitude, heading, -]

Pos_Yaw_Global_Int Position mode in Global coordinates, GPS coordinates

position [lat_int, lon_int, alt_float, yaw_float]

VTOL_Switch It is used to switch the VTOL mode

The RflySimCP class. This class is a control protocol for the com

prehensive model and is only suitable for advanced developer users. T

his class is a code representation of the protocol in Section 3.2.2.

Not all of the flags in the following table are currently used, and s

ome of the flags are reserved for later more complex functions.

RflySimCP class interface

ILen Length of inSILInts

ICmd Corresponding to inSILInts[0], indicates the subscript

corresponding to the instruction

IOffboard Corresponding to inSILInts[1], indicates that Offboard

mode corresponds to subscript

ILat Corresponding to inSILInts[6], latitude is stored when

global coordinates are supported

ILon Corresponding to inSILInts[7], longitude is stored whe

n global coordinates are supported

CmdEn inSILInts[0] Indicates that the 0 bit is enabled, indicat

117

ing that the command is reserved

CmdSIL inSILInts[0] Indicates that the first bit is enabled, indi

cating that the simulation mode is entered

CmdArmed inSILInts[0] The second bit is enabled, indicating that

the device is unlocked

CmdTakeoff inSILInts[0] The eighth bit is enabled, indicating take-

off

CmdPosition inSILInts[0] Enable the ninth bit, which indicates a fi

xed point

CmdLand inSILInts[0] The 10th enabled position indicates landin

g

CmdReturn inSILInts[0] Enables the 11th position, indicating retur

n

CmdOffboard_Pos inSILInts[0] The 16th bit is enabled, indicating that th

e Offboard position is reserved

CmdOffboard_Att inSILInts[0] Enables the 17th position, which indicates

 that the Offboard posture is reserved

CmdBase CmdEn+CmdSIL: This header is required when sendin

g commands

HasPos inSILInts[1] The 0th bit is enabled, indicating a positi

on

HasVel inSILInts[1] The first bit is enabled, indicating speed

HasAcc inSILInts[1] The second position enables, representing

acceleration

HasYaw inSILInts[1] The third bit is enabled, indicating a yaw

 Angle

HasYawRate inSILInts[1] The fourth bit is enabled, indicating a ya

w Angle rate

HasAtt inSILInts[1] The eighth bit is enabled, indicating post

ure

HasRollRate inSILInts[1] The 9th bit is enabled, indicating that the

re is a roll Angle rate

HasPitchRate inSILInts[1] The 10th enable indicates that the pitch

Angle rate is present

HasThrust inSILInts[1] The 11th enabled position indicates a thr

ottle

NED inSILInts[1] The 16th bit is enabled, which means res

erved in the NED coordinate system

Global inSILInts[1] The 17th bit enables, which means reserv

ed in the Global coordinate system

FLen inSILFloats length

FPos Position start subscript

FVel Velocity start subscript

118

FAcc Acceleration starting coordinates

FAtt Attitude starting coordinate

FAttRate Angular rate starting coordinates

FThrust Throttle coordinate

7.2.2. test

The test folder is used to store use cases. These use cases are u

sed both to babysit the functionality of the pythonSDK and to teach u

sers how to use the platform api for secondary development.

7.3. test_ctrl.py

This file mainly tests the interface of external control. The key

 logic and usage of each test case are described below.

TestTakeoff class. This class is the simplest routine to use rfly

sim pythonSDK to send the position in the NED coordinate system for t

akeoff. The constructor of this class supports the configuration of c

onnection modes, including UDP/MAVlink/Redis (Full+Simple) for a tota

l of 6 modes. The TestTakeoff constructor defines a Ctrl() instance s

elf.ctrl. The run() function initializes the data sending and receivi

ng thread with a call to self.ctrl.init_loop(). self.ctrl.send_pos_ne

d() sends the desired position for takeoff. Wait for takeoff altitud

e, program exit.

TestTakeoffVel class. Speed control allows the drone to take off

and reach the specified altitude. In order to more accurately reach t

he specified position through speed control, a PID controller is used

 in the use case. The input of the PID controller is the altitude err

or, and the output is the desired speed in the altitude direction. In

 this use case, the desired speed is generated by the loop function a

nd sent by self.ctrl.send_vel_ned().

The TestTracking class. This class uses position control to imple

ment "figure 8" tracking, and the routine shows how to implement more

119

 complex trajectory control with self.ctrl.send_pos_ned(). Its core f

unction is tracking_8_shape(), which represents the position of the d

rone on the "figure 8" by Angle, equivalent to control in the polar c

oordinate system. When the drone reaches a position, the correspondin

g polar Angle increases by an interval. However, the control interfac

e only supports Cartesian coordinates, so the polar coordinates are c

onverted to Cartesian coordinates and sent to the aircraft.

The TestGetPos class. Gets the current position and home point in

 different coordinate systems. This type also supports six modes, but

 in simple mode, there is no global location. Therefore, the global l

ocation in simple mode is 0.

The TestPosFrame class. Compare position control in NED coordinat

e system and Global coordinate system. In large-scale simulation, it

is often necessary to set the target point using the Global location.

 TestPosFrame is a routine that combines NED and Global coordinates.

The run() function first takes off in the NED coordinate system and w

aits to reach the specified altitude. After reaching the specified he

ight, horizontal position x+10, height +5. The EarthFrame instance co

nverts a position in the NED coordinate system to a Global position.

Then, send_pos_global() is called to send it to the plane. Finally, t

he position in NED coordinate system is used to determine whether the

 specified position is reached. If it can be reached, it not only pro

ves that send_pos_global() is successfully sent, but also proves that

 the conversion of EarthFrame is correct.

The TestVelFrame class. Compare the difference between the speed

instruction in NED coordinate system and the speed instruction in bod

y coordinate system. This class can be viewed as an extension of Test

TakeoffVel. The key modification is that the program selects send_vel

_ned or send_vel_body depending on the coordinate system specified. W

120

hen no yaw motion is performed, carrier coordinates and NED coordinat

e system coincide, so it is necessary to do a yaw motion to see the d

ifferent phenomena caused by sending the same data in two coordinate

systems. Specifically, when a speed is specified in the x direction o

f NED, it will travel north, and when x direction is specified in the

 body coordinate system, the speed will advance beyond the nose direc

tion.

TestSynModel class. This class is a test case for a system of int

egrated models that supports specifying the number of aircraft and mo

des. Each aircraft is controlled using a separate thread, and each th

read needs to pass in the aircraft instance and the initial position

of the aircraft. The initial position of the incoming aircraft and th

e initial position of the CopterSim need to be consistent to avoid ho

rizontal movement during takeoff. The initial position is calculated

through init_poses() in the routine. loop() is the action performed b

y each aircraft in order to cover as many interfaces of the integrate

d model as possible.

TestFWSynModel class. This is the class that tests the fixed wing

 integrated model, which supports the specified number of aircraft, m

ode, and whether attitude control is enabled. When att=True, the test

 case will use attitude mode to control take-off, level flight, turn,

 hover, etc. Otherwise, the takeoff(), send_pos_ned(), return_home(),

 land() and other takeoff() functions will be used to control the tra

jectory.

8. QGC secondary development

This paper mainly introduces the secondary development of QGroundContorl based on

 Windows environment, using Qt Creator 5.15.2 + Visual Studio 2019 tools, and realizing

some customization functions. Including QGC secondary development environment preparati

on and construction, module introduction, new function case introduction.

121

8.1．Development environment preparation and setup

Before fetching QGC source code, you need to configure GitHub to ensure that local

code can be pulled from GitHub.

Reference QGC website HTTPS: / / github.com/mavlink/qgroundcontrol fetching code,

including the module, through gitcode grab is completed. You need to refer to the.gitmodu

les file to confirm whether the submodule is successfully captured, for example, check wh

ether the qgroundcontrol directory exists./ src/GPS/Drivers/src source code. If it does not e

xist, grab the relevant source code separately and put it in the corresponding directory, an

d use the same method for other subdirectories. If you do not grab the relevant subdirecto

ry source code, the compilation will fail. In addition, please note that the submodules corr

esponding to the Master branch and the Tag branch are not shared. If different branch co

des are used, the corresponding submodules need to be captured.

Use instructions can not capture the source Code (GitHub configuration failure), you

can use the Code->Local->Download ZIP download package, refer to the.gitmodules file to

 confirm whether the submodule capture successfully. It is recommended to grab the latest

 Tag source code, which is more stable than the Master version. After the source code an

d submodules are downloaded, download the IDE tool.

Reference QGC website HTTPS: / / github.com/mavlink/qgroundcontrol, install Visual

Studio 2019 and Qt 5.15.2 respectively, pay attention to the need to install Visual Studio

2019 first, then install Qt. When installing Qt 5.15.2, compile tool option MVSC_2019 64

-bit, after the compile tool is installed, and ensure that it can be used normally. Open the

Qt Creator program and load the project by going to Qt Creator-> File -> Open File or P

roject -> select QgroundControl.pro in the qgroundcontrol directory. If the compilation fail

s, check that the Qt build kit is Qt5.15.2+MVSC_2019 64-bit, and if more than one Qt v

ersion is configured in the environment variable, put the Qt5.15.2 configuration before the

other versions.

8.2．Module introduction

QGC is designed to provide a single code base that can run across multiple operating

 system platforms and multiple device sizes and styles.

The QGC user interface is implemented using Qt QML. QML provides hardware acce

leration, which is a key feature for low-power devices such as tablets or phones. QML al

so provides features that make it easier to create a single user interface that can be adapt

ed to different screen sizes and resolutions.

122

QGC UI is aiming for more of a tablet + touch style UI than a desktop mouse-base

d UI. This makes a single UI easier to create, as tablet-style UIs also tend to work fine

on a desktop/laptop.

This chapter mainly explains how QGC works.

8.2.1 Communication process

The communication between QGC and devices is mainly carried out through MavLink

 protocols. For details about MavLink, see Section 5 of this chapter. QGC mainly process

es MavLink messages through LinkManager, MAVLinkProtocol, and MissionManager relate

d classes.

LinkManager always opens the UDP port to wait for heartbeat packets sent by the de

vice, and creates a new SerialLink when it detects that the device (Pixhawk, SiK Radio,

PX4 Flow) has established a UDP connection with the computer. The incoming bytes fro

m Link are then sent to the handlers of the MAVLinkProtocol class, which convert the by

tes into MAVLink messages. After the undo analysis, if the message is HEARTBEAT, the

MultiVehicleManager class will be notified and create a new vehicle object based on the i

nformation in the HEARTBEAT message. The vehicle object instantiates the plug-in that

matches the vehicle. The ParameterLoader PARAM_REQUEST_LIST associated with the v

ehicle object sends a message to the connected device to load the parameters using the pa

rameter protocol. Once the parameters are loaded, the MissionManager associated with the

vehicle object requests the task item from the connected device using the task protocol, a

nd the VehicleComponents will display their UI in the Settings view after the parameters

are loaded

8.2.2 Plug-in architecture

This is despite the fact that the MAVLink specification defines a standard communica

tion protocol for communicating with vehicles. Many aspects of the specification need to

be interpreted by firmware developers. Therefore, in many cases, communication with a ve

hicle running one firmware is slightly different from communication with a vehicle runnin

g a different firmware in order to accomplish the same task. In addition, each firmware c

an implement a different subset of the MAVLink command set.

Another major issue is that the MAVLink specification does not cover vehicle configu

rations or common parameter sets. As a result, all of the code associated with vehicle Set

tings is ultimately firmware-specific. In addition, any code that must refer to specific para

meters is also firmware specific.

Given all these differences between firmware implementations, it can be tricky to crea

123

te a single ground station application that can support every ground station application wit

hout degenerating the code base into a lot of if/then/else statements based on the firmware

 used by the vehicle.

QGC uses a plug-in architecture to isolate firmware-specific code from code common

to all firmware-allowing for further customization beyond what standard QGC can provide.

 At present, two classes, FirmwarePlugin and FirmwarePlugin, are mainly used to manage

the expanded plug-in functions.

The FirmwarePlugin class is commonly used to create standard interfaces for parts of

the Mavlink that are not standardized

The AutoPilotPlugin class is used to extend the user interface that provides vehicle S

ettings

QGCCorePlugin is used to expose vehicle-independent functionality of the QGC applic

ation itself through a standard interface. Custom builds then use it to adapt the QGC feat

ure set to meet their needs.

8.2.3 Important class introduction

The LinkManager, LinkInterface class is a pipeline that handles specific types of com

munication with devices. Such as serial port or UDP over WiFi. The base class for all lin

ks is LinkInterface. Each link runs on its own thread and sends bytes to MAVLinkProtoco

l. The LinkManager object keeps track of all open links in the system. LinkManager also

manages automatic connections through serial and UDP links.

The MAVLinkProtocol class takes the incoming bytes from the link and converts the

m into a MAVLink message. The MAVLink HEARTBEAT message is routed to the Multi

VehicleManager. All MAVLink messages are routed to the vehicle associated with that lin

k.

The MultiVehicleManager class creates only one object within the system. When it re

ceives HEARTBEAT on a link it hasn't seen before, it creates a Vehicle object. The Multi

VehicleManager also keeps track of all vehicles in the system and handles the switch fro

m one active vehicle to another and correctly handles the vehicles that are removed.

The Vehicle class is the main interface that implements communication with the physi

cal device. Note: there is also a UAS object associated with each Vehicle, which is a dep

recated class and is slowly being phased out, with all functionality transferred to the Vehi

cle class. No new code should be added here.

The FirmwarePlugin class is the base class for firmware plug-ins. Firmware plug-ins

contain firmware specific code, so vehicle objects are clean in terms of supporting a singl

e standard interface to the UI.

124

FirmwarePluginManager is a factory class that creates FirmwarePlugin instances based

on the vehicle's MAV_AUTOPILOT/MAV_TYPE combination.

8.2.4 Main components of the user interface

The main pattern of UI design in QGC is UI pages written in QML, which often co

mmunicate with custom "controllers" written in C++. This follows some modified variation

 of the MVC design pattern.

QML code is bound to system-related information through several mechanisms: (1) cu

stom controllers, (2) global objects that use QGroundControl to provide access to things li

ke moving vehicles, and (3) FactSystem to provide access to parameters and, in some cas

es, custom facts. Note: Due to the complexity of QML used in QGC and its reliance on

communication with C++ objects to drive the ui, it is not possible to edit QML using Q

ML Designer provided by Qt.

QGC does not have different coded UIs for different screen sizes and/or form factors.

 In general, it uses the QML layout feature to rearrange a set of QML UI code to fit dif

ferent form factors. In some cases, it will provide less detail on a small screen size to m

ake it fit. But this is a simple pattern of visibility. The FactSystem system is used to ma

nage all the individual data within the system. The data model is then connected to the c

ontrol. The QGC UI is developed from a basic set of reusable controls and UI elements.

This way, any new functionality added to the reusable control is now available throughout

the UI. These reusable controls also connect to FactSystem Facts, which then automaticall

y provide the appropriate UI.

QGC has a standard set of fonts and color palettes that are used by referring to the

following two modules.

import QGroundControl.Palette 1.0

The import QGroundControl. ScreenTools 1.0

QGC software themes are designed in two styles: light and dark. Light palettes are s

uitable for outdoor use and dark palettes are suitable for indoor use. In general, you shoul

d not specify a color directly for the UI, but should always use one of the colors in the

palette. If you do not follow this rule, the user interface you create will not be able to c

hange from light/dark styles.

The QGCMapPalette is used to draw colors on the map. Because of the different ma

p styles, especially satellite maps and street maps, you need to use different colors to dra

w them clearly. Satellite maps need lighter colors to be seen, while street maps need dark

er colors to be seen. The QGCMapPalette project provides a set of colors for this purpose

125

 as well as the ability to switch between light and dark colors on the map.

The ScreenTools item provides a value that you can use to specify the font size. It a

lso provides information about screen size and whether QGC is running on mobile device

s.

The following controls are QGC variants of the standard Qt QML controls. They pro

vide the same functionality as the corresponding Qt controls, except that they are drawn u

sing the QGC palette.

⚫ QGCButton

⚫ QGCCheckBox

⚫ QGCColoredImage

⚫ QGCComboBox

⚫ QGCFlickable

⚫ QGCLabel

⚫ QGCMovableItem

⚫ QGCRadioButton

⚫ QGCSlider

⚫ QGCTextField

The following defined controls are unique to QGC and are used to create standard U

I elements.

⚫ DropButton - The RoundButton that pops up in the Options panel when clicked.

 An example is the Sync button in a floor plan.

⚫ ExclusiveGroupItem - Used as the base item for custom controls that support the

 QML ExclusiveGroup concept.

⚫ QGCView - Basic controls for all top-level views in your system. Provides supp

ort for FactPanels and displays QGCViewDialogs and QGCViewMessages.

⚫ QGCViewDialog - The dialog box that pops up from the right side of QGCView.

 You can specify the accept/reject button for the dialog box and the dialog conte

nt. An example use is when you click on a parameter, it pops up the Value Edi

tor dialog box.

⚫ QGCViewMessage - A simplified version of QGCViewDialog that allows you to

specify buttons and simple text messages.

⚫ QGCViewPanel - The main view content in QGCView.

⚫ RoundButton - A round button control that uses an image as its internal content.

⚫ SetupPage - All the basic controls for setting up the vehicle components page. P

rovides title, description, and component page content areas

126

8.2.5 Factual system

The Fact System provides a set of features that standardize and simplify the creation

of the QGC user interface. It is mainly implemented by the following classes:

The Fact class implements a single value within the system.

The FactMetaData class implements each fact to be associated. It provides detailed in

formation about facts to drive automatic user interface generation and verification

A Fact control is a QML user interface control that connects to a fact and provides

FactMetaData users with a control to modify/display values associated with the fact.

The FactGroup class implements a set of facts. It is used to organize facts and mana

ge user-defined facts.

You can add user-defined facts by overriding the factGroups function in the custom fi

rmware plug-in class. FirmwarePlugin These functions return the name of the fact group

map, which identifies the added fact group. You can add a custom fact group, FactGroup,

by extending the class. FactGroup can define FactMetaDatas by providing a json file with

the necessary information, using the appropriate constructor.

adjustMetaData can also change the metadata FirmwarePlugin for existing facts throug

h the rewriting class.

You can use or factGroups to access vehicle-related facts (including facts that belong

to the group of facts returned by the vehicle firmware plugin feature)getFact(" factName")

getFact("factGroupName.factName"), for more information, See the comments in FirmwareP

lugin.h.

8.2.6 Primary view

AppSettings.qml draws the Appliction Settings page, and each button loads a separate

QML page

The Vehicle Setup page is drawn in SetupViey.qml, fixed button/page set: summary, fi

rmware, and the rest of the buttons/pages are from the AutoPilotPlugin VehicleComponent

list.

The main visual UI in PlanView.qml is the FlightMap control QML communicates wi

th the MissionController (C++), which provides the task item data and methods for the vi

ew. Commands for dynamically editing a specific task item from the json metadata hierarc

hy. This hierarchy is called the task command tree. This way, you only need to create jso

n metadata when you add new commands.

In FlightDisplayView.qml, the QML code communicates with the (C++) MissionContro

127

ller for task display, the instrument widget communicates with the moving vehicle object,

and the two main internal views are: FlightDisplayViewMap, FlightDisplayViewVideo

8.3．New feature case

Based on the RflySim platform, add the ability to read images from shared memory f

or display in QGC, as well as create and set up RflySim3D cameras.

Added UI interface after reading image display function from shared memory:

① Shared memory image display window, you can scale and switch the window like Q

GC display camera data. Image shows the UI changes visible FlyViewVideo. Add the

 QML FlightDisplayViewSharedMemory. QML files, by adding relevant QML file Obj

ect Name, Ensure that the specified QML object is available in QGCCorePlugin.cc, a

nd then draw the shared memory data onto the QML.

RflySim3D camera ID switch, select the corresponding camera ID through the drop-d

own box, the loaded camera configuration will be different. The FactComboBox componen

t added in FlyView.qml can be changed by changing the cameraID. Based on the fact sys

tem of QGC, add the cameraID function to create the object and bind the _cameraIDChan

ged parameter function in the VideoManager class. The change of UI value is sent to Rfl

128

ySim3D through UDP to realize the switch of camera ID.

①Switch the video display source. Select the shared memory data for the video displ

ay from the drop-down list box. The data obtained from the shared memory will be displ

ayed on the video display page. For details about how to add an interface, see videoSourc

e modifications in GeneralSettings.qml.

②RflySim3D Camera ID Switch, select the corresponding camera ID from the drop-dow

n box. The component with id cameraNumberLabel is added to GeneralSettings.qml. Based

 on QGC's de facto system, the cameraID function is added to create an object and _cam

eraIDChanged in the VideoManager class is bound. The change of UI value is sent to Rfl

ySim3D through UDP to realize the switch of camera ID.

③、④RflySim3D camera pixel switch, modify the relevant value, you can set to get

the image of the large camera ID switch change visible GeneralSettings.qml add the id of

pixel* component, based on QGC fact system, add dataWidth function to create an object,

 Bind the _dataWidthChanged function in the VideoManager class, and send the change of

 UI value to RflySim3D through UDP to realize the switch of camera parameters.

⑤The plane ID number attached to the camera.

129

⑥Camera image type Settings, the image can be set to RGB image, depth image, gr

ay image and other formats.

⑦ Camera Angle of view setting

⑧ Set the camera binding type

⑨ Camera binding position Settings

⑩ Camera mounting Angle setting

⑪Updates camera parameter Settings Add the UI related to the above Settings in the

 GeneralSettings.qml file, create Fact objects in VideoSettings.cc based on QGC's fact

system, Then bind slot functions in VideoManager, C++ related classes, and values th

at respond to UI modifications in QML, and save the modified values in the VisionS

ensorReq structure provided. Finally by clicking on the Update Camera button call Vi

deoManager: : clickCreatBtn slot () function, will give RlySim3D VisionSensorReq str

ucture through UDP broadcast program, realize the Update of the Camera

	1. RflySim platform control hardware interface
	1.1. Remote control
	1.1.1. Real remote control
	1.1.2. QGC+ remote control USB control
	1.1.3. QGC virtual remote control

	1.2. Ground station control
	1.2.1. Parameter Settings
	1.2.2. Key commands (take-off, landing, return) (Vehicle Setup)
	1.2.3. Route Planning (Plan)
	1.2.4. Analyze Tools
	1.2.5. Ground Station Application settings

	1.3. Control equipment and communication media
	1.3.1. Wireless data transmission (PC connects to PX4 through data transmission and controls it)
	1.3.2. Wired serial port module (NX connects PX4 through wired serial port and controls it)
	1.3.3. WIFI module (with onboard board for message forwarding)

	2. RflySim platform control mode interface
	2.1. Conventional flight control mode
	2.1.1. Take-off Mode:
	2.1.2. Landing mode:
	2.1.3. Fixed point/hover mode:
	2.1.4. Task mode:
	2.1.5. Set height mode:
	2.1.6. Self-stabilization/manual control (attitude Angle control mode) mode:
	2.1.7. Stunt (Angular speed control) mode:
	2.1.8. Return mode:

	2.2. External control mode
	2.2.1. Control messages
	2.2.2. Control interface
	2.2.3. Typical combination mode

	3. Control model
	3.1. High precision model +PX4 controller composed of software/hardware simulation model in the loop (rely on CopterSim, copied from the model group)
	3.1.1. CopterSim and PX4 communication port
	3.1.2. Messages sent by CopterSim to PX4 over TCP
	3.1.3. Messages sent by CopterSim to PX4 over UDP

	3.2. High-precision model +Simulink controller composed of high-precision integrated model（Rely on CopterSim）
	3.2.1. Integrated Model control protocol
	3.2.2. Rotor integrated model control interface
	3.2.3. Fixed wing integrated model control interface

	3.3. Simplified comprehensive model based on particle model（Rely on Python rotors to copy from the cluster API）

	4. RflySim control protocol（Only the enterprise customized version supports Redis）
	4.1. General introduction
	4.1.1. Emulation modes supported by CopterSim
	4.1.2. Connection modes supported by CopterSim

	4.2. Data Protocol
	4.2.1. outHILStateData
	4.2.2. SOut2Simulator
	4.2.3. inHILCMDData
	4.2.4. outHILStateShort
	4.2.5. inOffboardShortData（Minimal control protocol, supported by CopterSim in UDP/Redis Simple mode）

	4.3. Communication ports
	4.3.1. UDP14540 series +TCP4560 series（communication with PX4, PX4 default port when the software is simulated in the loop）
	4.3.2. UDP16540 series (communication with PX4, RflySim private port during ring simulation)
	4.3.3. Serial port（communication with PX4, hardware-in-the-loop emulation port）
	4.3.4. UDP20100 series (Python/Simulink to obtain status information and issue control commands)
	4.3.5. UDP30100 Series (Get True status information or issue control commands through inSIL)
	4.3.6. UDP40100 Series (Get User-Defined messages)
	4.3.7. TCP6379（Redis port）

	4.4. RflySim UDP protocol
	4.4.1. CopterSim UDP_Simple
	4.4.2. CopterSim UDP_Full
	4.4.3. CopterSim Redis_Simple/Full
	4.4.4. Simulink control mode Full/Simple/UltraSimple
	4.4.5. Python control mode（Full support for CopterSim mode）

	5. The MAVLink protocol
	5.1. Introduction to MAVLin
	5.1.1. Format of the MAVLink packet
	5.1.2. MAVLink data parsing

	5.2. Common MAVLink messages
	5.2.1. HEARTBEAT
	5.2.2. ATTITUDE（Attitude - Euler Angle）
	5.2.3. ATTITUDE_QUATERNIO
	5.2.4. LOCAL_POSITION_NED
	5.2.5. GLOBAL_POSITION_IN
	5.2.6. ACTUATOR_OUTPUT_STATUS
	5.2.7. ATTITUDE_TARGE
	5.2.8. POSITION_TARGET_LOCAL_NE
	5.2.9. POSITION_TARGET_GLOBAL_IN
	5.2.10. HOME_POSITIO
	5.2.11. HIL_ACTUATOR_CONTROLS（PX4 to Sim control output）
	5.2.12. HIL_SENSOR（Sim to PX4 sensor information）
	5.2.13. HIL_GPS（Sim to PX4 GPS information）

	5.3. Microservice
	5.3.1 Heartbeat/connection protocol
	5.3.2 Task protocol
	5.3.3 Parameter protocol
	5.3.4 Command protocol
	5.3.5 Manual control protocol (joystick)
	5.3.6 Camera protocol
	5.3.7 Image transfer protocol
	5.3.8 File Transfer Protocol (FTP)
	5.3.9 PING protocol
	5.3.10 Path Planning Protocol (Trajectory Interface)
	5.3.11 Battery protocol
	5.3.12 Event Interface (WIP)

	5.3. CopterSim MAVLink_Simple
	5.4. CopterSim MAVLink_Full

	6. Control interface（original,PX4MavCtrlV4.py）
	6.1. UDP control interface of Simulink
	6.1.1. UDP Send (UDP Send Byte Stream Module)
	6.1.2. Receice UDP (UDP Receive Byte Stream Module)
	6.1.3. UDP_SIL_State_Receiver (Module for receiving simulation position, speed, attitude, etc.)
	6.1.4. UDP_True_State_Receiver (Module for receiving information such as real position, speed, and attitude)
	6.1.5. Location control (location messages packaged into byte streams)
	6.1.6. Speed control (speed messages packaged into byte streams)
	6.1.7. Analog remote control PWM control

	6.2. Python UDP control interface
	6.2.1. PX4MavCtrler:__init__()（Initialization of parameters）
	6.2.2. InitMavLoop()（Initialize CopterSim to listen to MAVlink）
	6.2.3. endMavLoop()（Stop Mavlink listening）
	6.2.4. initOffboard()（Send offboard to PX4）
	6.2.5. initOffboard2()（Send offboard to PX4）
	6.2.6. InitTrueDataLoop()（Example Initialize listening for UDP True）
	6.2.7. EndTrueDataLoop()（Example End UDP True listening）
	6.2.8. Access the read status of PX4MavCtrler member variables
	6.2.9. SendVelNED()（Send maximum speed to PX4）
	6.2.10. SendVelNEDNoYaw()（Maximum transmission speed without yaw）
	6.2.11. SendVelFRD()（Maximum sending speed under FRD framework）
	6.2.12. SendVelNoYaw()（Send maximum speed under FRD frame without rolling down）
	6.2.13. SendPosNED()（Send coordinates to PX4）
	6.2.14. SendVelYawAlt()（Send gesture to PX4）
	6.2.15. SendPosGlobal()（Send target location to PX4）
	6.2.16. SendPosNEDNoYaw()（Send target position without yaw control）
	6.2.17. SendPosFRD()（Send the location under FRD to PX4）
	6.2.18. SendPosFRDNoYaw()（Send position under FRD without yaw control to PX4）
	6.2.19. SendPosNEDExt()（Send target position to fixed wing）
	6.2.20. sendPX4UorbRflyCtrl()（Send data to CopterSim）
	6.2.21. SendAccPX4()（Send acceleration information to PX4）
	6.2.22. endOffboard()（Send out offboard mode to PX4）
	6.2.23. stopRun()（Stop listening for mavlink messages）

	6.3. Simulink's MAVLink control interface (serial connection)
	6.3.1. mavlink_msg_sender
	6.3.2. mavlink_msg_receiver
	6.3.3. MavLink Serial Input&Output

	6.4. Python's MAVLink control interface (based on pymavlink)
	6.4.1. SendMavArm () (issue a disarmament order to PX4)
	6.4.2. SendMavCmdLong() (Sending the command length to PX4)
	6.4.3. sendMavOffboardCmd() (send an off-board command to PX4)
	6.4.4. initRCSendLoop() (Initializing remote control)
	6.4.5. SendRCPwms() (Update PWM value of remote control)
	6.4.6. endRCSendLoop() (Stopping the remote transmission loop)
	6.4.7. SendSetMode() (Send the mavlink command to switch the flight mode)
	6.4.8. SendAttPX4() (sends speed control signal to PX4)
	6.4.9. enFixedWRWTO () (order the aircraft to take off from the runway)
	6.4.10. SendCruiseSpeed()（Send the command to change the cruising speed of the aircraft）
	6.4.11. SendCopterSpeed()（Set the maximum multi-rotor speed）
	6.4.12. SendGroundSpeed()（Set the ground speed of the aircraft）
	6.4.13. SendCruiseRadius()（Set the cruising radius of the aircraft）
	6.4.14. sendTakeoffMode()（Take-off order）
	6.4.15. sendMavTakeOff()（Order the plane to take off to the desired position）
	6.4.16. sendMavTakeOffLocal()（Order the aircraft to fly to the desired local location）
	6.4.17. sendMavTakeOffGPS()（Order the aircraft to fly to the desired global location）
	6.4.18. sendMavLand()（Land in position）
	6.4.19. sendMavLandGPS()（Land at the designated global location）
	6.4.20. sendMavSetParam()（Send a command to PX4 to change the expected parameters）
	6.4.21. SendHILCtrlMsg() (PX4 send to ComSim)
	6.4.22. SendHILCtrlMsg1()（Send debugging instruction）

	6.5. Ros-based MAVLink control interface (based on mavros, copy the visual group)

	7. rflysim Standard Library Edition control interface (new version, support Redis)
	7.1. ctrl
	7.1.1. Code structure
	7.1.2. offboard.py
	7.1.3. topics.py

	7.2. User Api
	7.2.1. ctrl
	7.2.2. test

	7.3. test_ctrl.py

	8. QGC secondary development
	8.1．Development environment preparation and setup
	8.2．Module introduction
	8.2.1 Communication process
	8.2.2 Plug-in architecture
	8.2.3 Important class introduction
	8.2.4 Main components of the user interface
	8.2.5 Factual system
	8.2.6 Primary view

	8.3．New feature case

